Nuprl Lemma : single-valued-bag-is-list
∀[A:Type]. ∀[bs:bag(A)].  bs ∈ A List supposing single-valued-bag(bs;A)
Proof
Definitions occuring in Statement : 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type, 
single-valued-bag: single-valued-bag(b;T), 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
single-valued-bag: single-valued-bag(b;T), 
bag: bag(T), 
all: ∀x:A. B[x], 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
squash: ↓T, 
true: True, 
single-valued-list: single-valued-list(L;T), 
implies: P ⇒ Q, 
bag-member: x ↓∈ bs, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
subtype_rel: A ⊆r B
Latex:
\mforall{}[A:Type].  \mforall{}[bs:bag(A)].    bs  \mmember{}  A  List  supposing  single-valued-bag(bs;A)
Date html generated:
2016_05_17-AM-11_10_33
Last ObjectModification:
2016_01_18-AM-00_09_15
Theory : process-model
Home
Index