Nuprl Lemma : std-env-reliable
∀nm:Id
  ∀[M:Type ⟶ Type]
    ∀S0:InitialSystem(P.M[P]). ∀n2m:ℕ ⟶ pMsg(P.M[P]). ∀l2m:Id ⟶ pMsg(P.M[P]).
      reliable-env(std-env(nm); pRun(S0;std-env(nm);n2m;l2m)) 
    supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
std-env: std-env(nm), 
reliable-env: reliable-env(env; r), 
InitialSystem: InitialSystem(P.M[P]), 
pRun: pRun(S0;env;nat2msg;loc2msg), 
pMsg: pMsg(P.M[P]), 
Id: Id, 
strong-type-continuous: Continuous+(T.F[T]), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
strong-type-continuous: Continuous+(T.F[T]), 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
reliable-env: reliable-env(env; r), 
std-env: std-env(nm), 
pi1: fst(t), 
exists: ∃x:A. B[x], 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Latex:
\mforall{}nm:Id
    \mforall{}[M:Type  {}\mrightarrow{}  Type]
        \mforall{}S0:InitialSystem(P.M[P]).  \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).
            reliable-env(std-env(nm);  pRun(S0;std-env(nm);n2m;l2m)) 
        supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-11_03_13
Last ObjectModification:
2016_01_18-AM-00_12_08
Theory : process-model
Home
Index