Nuprl Lemma : stdEO_wf
∀[M:Type ⟶ Type]
  ∀[S0:InitialSystem(P.M[P])]. ∀[n2m:ℕ ⟶ pMsg(P.M[P])]. ∀[l2m:Id ⟶ pMsg(P.M[P])]. ∀[env:pEnvType(P.M[P])].
    (stdEO(n2m;l2m;env;S0) ∈ EO+(pMsg(P.M[P]))) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
stdEO: stdEO(n2m;l2m;env;S), 
InitialSystem: InitialSystem(P.M[P]), 
pEnvType: pEnvType(T.M[T]), 
pMsg: pMsg(P.M[P]), 
event-ordering+: EO+(Info), 
Id: Id, 
strong-type-continuous: Continuous+(T.F[T]), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
stdEO: stdEO(n2m;l2m;env;S), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
InitialSystem: InitialSystem(P.M[P]), 
subtype_rel: A ⊆r B, 
prop: ℙ, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
System: System(P.M[P]), 
std-initial: std-initial(S), 
pi2: snd(t), 
lg-all: ∀x∈G.P[x], 
ldag: LabeledDAG(T), 
nat: ℕ, 
all: ∀x:A. B[x], 
pInTransit: pInTransit(P.M[P]), 
pi1: fst(t)
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[S0:InitialSystem(P.M[P])].  \mforall{}[n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P])].  \mforall{}[l2m:Id  {}\mrightarrow{}  pMsg(P.M[P])].
    \mforall{}[env:pEnvType(P.M[P])].
        (stdEO(n2m;l2m;env;S0)  \mmember{}  EO+(pMsg(P.M[P]))) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-10_52_30
Last ObjectModification:
2016_01_18-AM-00_11_39
Theory : process-model
Home
Index