Nuprl Lemma : sv-bag-equals-list
∀[A:Type]. ∀[L:A List]. ∀[bs:bag(A)].  (L = bs ∈ (A List)) supposing ((L = bs ∈ bag(A)) and single-valued-list(L;A))
Proof
Definitions occuring in Statement : 
single-valued-list: single-valued-list(L;T), 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
bag: bag(T), 
all: ∀x:A. B[x], 
prop: ℙ, 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
cand: A c∧ B, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
single-valued-list: single-valued-list(L;T), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].  \mforall{}[bs:bag(A)].    (L  =  bs)  supposing  ((L  =  bs)  and  single-valued-list(L;A))
Date html generated:
2016_05_17-AM-11_11_02
Last ObjectModification:
2015_12_29-PM-05_15_44
Theory : process-model
Home
Index