Nuprl Lemma : sv-list-tail
∀[A:Type]. ∀[L:A List].  0 < ||L|| ⇒ single-valued-list(tl(L);A) supposing single-valued-list(L;A)
Proof
Definitions occuring in Statement : 
single-valued-list: single-valued-list(L;T), 
length: ||as||, 
tl: tl(l), 
list: T List, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
single-valued-list: single-valued-list(L;T), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].    0  <  ||L||  {}\mRightarrow{}  single-valued-list(tl(L);A)  supposing  single-valued-list(L;A)
Date html generated:
2016_05_17-AM-11_10_27
Last ObjectModification:
2015_12_29-PM-05_15_29
Theory : process-model
Home
Index