Step
*
of Lemma
system-realizes_wf
∀[M:Type ⟶ Type]
∀[S:InitialSystem(P.M[P])]. ∀[n2m:ℕ ⟶ pMsg(P.M[P])]. ∀[l2m:Id ⟶ pMsg(P.M[P])]. ∀[A:pEnvType(P.M[P])
⟶ pRunType(P.M[P])
⟶ ℙ].
∀[B:EO+(pMsg(P.M[P])) ⟶ ℙ].
(assuming(env,r.A[env;r])
S |- eo.B[eo] ∈ ℙ)
supposing Continuous+(P.M[P])
BY
{ (RepUR ``system-realizes let`` 0
THEN (UnivCD THENA Auto)
THEN DVar `S'
THEN RepeatFor 2 ((MemCD THEN Try (Complete (Auto))))
THEN (Assert pRun(S;env;n2m;l2m) ∈ pRunType(P.M[P]) BY
(DoSubsume THEN Auto))
THEN Auto
THEN (BLemma `run-initialization-property` THEN Auto THEN BLemma `std-initial-property` THEN Auto)⋅) }
Latex:
Latex:
\mforall{}[M:Type {}\mrightarrow{} Type]
\mforall{}[S:InitialSystem(P.M[P])]. \mforall{}[n2m:\mBbbN{} {}\mrightarrow{} pMsg(P.M[P])]. \mforall{}[l2m:Id {}\mrightarrow{} pMsg(P.M[P])].
\mforall{}[A:pEnvType(P.M[P]) {}\mrightarrow{} pRunType(P.M[P]) {}\mrightarrow{} \mBbbP{}]. \mforall{}[B:EO+(pMsg(P.M[P])) {}\mrightarrow{} \mBbbP{}].
(assuming(env,r.A[env;r])
S |- eo.B[eo] \mmember{} \mBbbP{})
supposing Continuous+(P.M[P])
By
Latex:
(RepUR ``system-realizes let`` 0
THEN (UnivCD THENA Auto)
THEN DVar `S'
THEN RepeatFor 2 ((MemCD THEN Try (Complete (Auto))))
THEN (Assert pRun(S;env;n2m;l2m) \mmember{} pRunType(P.M[P]) BY
(DoSubsume THEN Auto))
THEN Auto
THEN (BLemma `run-initialization-property` THEN Auto THEN BLemma `std-initial-property` THEN Auto)
\mcdot{})
Home
Index