Nuprl Lemma : system-strongly-realizes-and
∀[M:Type ⟶ Type]
  ∀[A:pEnvType(P.M[P]) ⟶ pRunType(P.M[P]) ⟶ ℙ]
    ∀n2m:ℕ ⟶ pMsg(P.M[P]). ∀l2m:Id ⟶ pMsg(P.M[P]). ∀S1,S2:InitialSystem(P.M[P]).
      ∀[B1,B2:EO+(pMsg(P.M[P])) ⟶ ℙ].
        (assuming(env,r.A[env;r])
          S1 |= eo.B1[eo]
        ⇒ assuming(env,r.A[env;r])
            S2 |= eo.B2[eo]
        ⇒ assuming(env,r.A[env;r])
            S1 @ S2 |= eo.B1[eo] ∧ B2[eo]) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
system-strongly-realizes: system-strongly-realizes, 
system-append: S1 @ S2, 
InitialSystem: InitialSystem(P.M[P]), 
pEnvType: pEnvType(T.M[T]), 
pRunType: pRunType(T.M[T]), 
pMsg: pMsg(P.M[P]), 
event-ordering+: EO+(Info), 
Id: Id, 
strong-type-continuous: Continuous+(T.F[T]), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
strong-type-continuous: Continuous+(T.F[T]), 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
InitialSystem: InitialSystem(P.M[P]), 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
System: System(P.M[P]), 
system-append: S1 @ S2, 
std-initial: std-initial(S), 
pi2: snd(t), 
ldag: LabeledDAG(T), 
pInTransit: pInTransit(P.M[P]), 
pi1: fst(t), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[A:pEnvType(P.M[P])  {}\mrightarrow{}  pRunType(P.M[P])  {}\mrightarrow{}  \mBbbP{}]
        \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}S1,S2:InitialSystem(P.M[P]).
            \mforall{}[B1,B2:EO+(pMsg(P.M[P]))  {}\mrightarrow{}  \mBbbP{}].
                (assuming(env,r.A[env;r])
                    S1  |=  eo.B1[eo]
                {}\mRightarrow{}  assuming(env,r.A[env;r])
                        S2  |=  eo.B2[eo]
                {}\mRightarrow{}  assuming(env,r.A[env;r])
                        S1  @  S2  |=  eo.B1[eo]  \mwedge{}  B2[eo]) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-11_05_35
Last ObjectModification:
2016_01_18-AM-00_11_26
Theory : process-model
Home
Index