Nuprl Lemma : system-strongly-realizes_functionality
∀[M:Type ⟶ Type]
∀n2m:ℕ ⟶ pMsg(P.M[P]). ∀l2m:Id ⟶ pMsg(P.M[P]).
∀[A:pEnvType(P.M[P]) ⟶ pRunType(P.M[P]) ⟶ ℙ]. ∀[B:EO+(pMsg(P.M[P])) ⟶ ℙ].
∀X,Y:InitialSystem(P.M[P]).
(system-equiv(P.M[P];X;Y)
⇒ assuming(env,r.A[env;r]) X |= eo.B[eo]
⇒ assuming(env,r.A[env;r]) Y |= eo.B[eo])
supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement :
system-strongly-realizes: system-strongly-realizes,
InitialSystem: InitialSystem(P.M[P])
,
pEnvType: pEnvType(T.M[T])
,
pRunType: pRunType(T.M[T])
,
system-equiv: system-equiv(T.M[T];S1;S2)
,
pMsg: pMsg(P.M[P])
,
event-ordering+: EO+(Info)
,
Id: Id
,
strong-type-continuous: Continuous+(T.F[T])
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
strong-type-continuous: Continuous+(T.F[T])
,
ext-eq: A ≡ B
,
and: P ∧ Q
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
system-strongly-realizes: system-strongly-realizes,
system-realizes: system-realizes,
let: let,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
,
InitialSystem: InitialSystem(P.M[P])
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
System: System(P.M[P])
,
sub-system: sub-system(P.M[P];S1;S2)
,
sublist: L1 ⊆ L2
,
exists: ∃x:A. B[x]
,
int_seg: {i..j-}
,
decidable: Dec(P)
,
or: P ∨ Q
,
std-initial: std-initial(S)
,
pi2: snd(t)
,
system-equiv: system-equiv(T.M[T];S1;S2)
,
pi1: fst(t)
,
ge: i ≥ j
,
guard: {T}
,
lelt: i ≤ j < k
,
top: Top
,
nat: ℕ
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
,
less_than: a < b
,
squash: ↓T
,
cand: A c∧ B
,
ldag: LabeledDAG(T)
,
le: A ≤ B
,
sq_type: SQType(T)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
component: component(P.M[P])
,
process-equiv: process-equiv,
less_than': less_than'(a;b)
,
inject: Inj(A;B;f)
Latex:
\mforall{}[M:Type {}\mrightarrow{} Type]
\mforall{}n2m:\mBbbN{} {}\mrightarrow{} pMsg(P.M[P]). \mforall{}l2m:Id {}\mrightarrow{} pMsg(P.M[P]).
\mforall{}[A:pEnvType(P.M[P]) {}\mrightarrow{} pRunType(P.M[P]) {}\mrightarrow{} \mBbbP{}]. \mforall{}[B:EO+(pMsg(P.M[P])) {}\mrightarrow{} \mBbbP{}].
\mforall{}X,Y:InitialSystem(P.M[P]).
(system-equiv(P.M[P];X;Y)
{}\mRightarrow{} assuming(env,r.A[env;r])
X |= eo.B[eo]
{}\mRightarrow{} assuming(env,r.A[env;r])
Y |= eo.B[eo])
supposing Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-11_05_20
Last ObjectModification:
2016_01_18-AM-00_27_32
Theory : process-model
Home
Index