Nuprl Lemma : system-strongly-realizes_wf
∀[M:Type ⟶ Type]
  ∀[S:InitialSystem(P.M[P])]. ∀[n2m:ℕ ⟶ pMsg(P.M[P])]. ∀[l2m:Id ⟶ pMsg(P.M[P])]. ∀[A:pEnvType(P.M[P])
                                                                                       ⟶ pRunType(P.M[P])
                                                                                       ⟶ ℙ].
  ∀[B:EO+(pMsg(P.M[P])) ⟶ ℙ].
    (assuming(env,r.A[env;r])
      S |= eo.B[eo] ∈ ℙ) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
system-strongly-realizes: system-strongly-realizes, 
InitialSystem: InitialSystem(P.M[P]), 
pEnvType: pEnvType(T.M[T]), 
pRunType: pRunType(T.M[T]), 
pMsg: pMsg(P.M[P]), 
event-ordering+: EO+(Info), 
Id: Id, 
strong-type-continuous: Continuous+(T.F[T]), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
system-strongly-realizes: system-strongly-realizes, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
prop: ℙ, 
InitialSystem: InitialSystem(P.M[P]), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[S:InitialSystem(P.M[P])].  \mforall{}[n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P])].  \mforall{}[l2m:Id  {}\mrightarrow{}  pMsg(P.M[P])].
    \mforall{}[A:pEnvType(P.M[P])  {}\mrightarrow{}  pRunType(P.M[P])  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[B:EO+(pMsg(P.M[P]))  {}\mrightarrow{}  \mBbbP{}].
        (assuming(env,r.A[env;r])
            S  |=  eo.B[eo]  \mmember{}  \mBbbP{}) 
    supposing  Continuous+(P.M[P])
Date html generated:
2016_05_17-AM-11_04_16
Last ObjectModification:
2015_12_29-PM-05_17_04
Theory : process-model
Home
Index