Step
*
2
1
1
1
of Lemma
cut-list-maximal-exists
1. Info : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. u : E(X)
6. v : E(X) List
7. ¬([u / v] = {} ∈ fset(E(X)))@i
8. ∀e:E(X)
((e ∈ [u / v])
⇒ (∃e'∈[u / v]. ((e = (X-pred e') ∈ E(X)) ∧ (¬(e' = e ∈ E(X)))) ∨ ((e = (f e') ∈ E(X)) ∧ (¬(e' = e ∈ E(X))))))
9. e : {e:E| (e ∈ [u / v])} @i
10. (e ∈ [u / v])
⊢ ∃e':{e:E| (e ∈ [u / v])} . (e < e')
BY
{ (Assert e ∈ E(X) BY
(MemTypeCD THEN Auto)) }
1
.....set predicate.....
1. Info : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. u : E(X)
6. v : E(X) List
7. ¬([u / v] = {} ∈ fset(E(X)))@i
8. ∀e:E(X)
((e ∈ [u / v])
⇒ (∃e'∈[u / v]. ((e = (X-pred e') ∈ E(X)) ∧ (¬(e' = e ∈ E(X)))) ∨ ((e = (f e') ∈ E(X)) ∧ (¬(e' = e ∈ E(X))))))
9. e : {e:E| (e ∈ [u / v])} @i
10. (e ∈ [u / v])
⊢ ↑e ∈b X
2
1. Info : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. u : E(X)
6. v : E(X) List
7. ¬([u / v] = {} ∈ fset(E(X)))@i
8. ∀e:E(X)
((e ∈ [u / v])
⇒ (∃e'∈[u / v]. ((e = (X-pred e') ∈ E(X)) ∧ (¬(e' = e ∈ E(X)))) ∨ ((e = (f e') ∈ E(X)) ∧ (¬(e' = e ∈ E(X))))))
9. e : {e:E| (e ∈ [u / v])} @i
10. (e ∈ [u / v])
11. e ∈ E(X)
⊢ ∃e':{e:E| (e ∈ [u / v])} . (e < e')
Latex:
Latex:
1. Info : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. u : E(X)
6. v : E(X) List
7. \mneg{}([u / v] = \{\})@i
8. \mforall{}e:E(X)
((e \mmember{} [u / v])
{}\mRightarrow{} (\mexists{}e'\mmember{}[u / v]. ((e = (X-pred e')) \mwedge{} (\mneg{}(e' = e))) \mvee{} ((e = (f e')) \mwedge{} (\mneg{}(e' = e)))))
9. e : \{e:E| (e \mmember{} [u / v])\} @i
10. (e \mmember{} [u / v])
\mvdash{} \mexists{}e':\{e:E| (e \mmember{} [u / v])\} . (e < e')
By
Latex:
(Assert e \mmember{} E(X) BY
(MemTypeCD THEN Auto))
Home
Index