Step
*
1
2
1
of Lemma
es-prior-interface-val-unique
1. Info : Type
2. es : EO+(Info)
3. X : EClass(Top)
4. e : E
5. ↑e ∈b prior(X)
6. p : E
7. (p <loc e)
8. ↑p ∈b X
9. ∀e'':E. ((e'' <loc e)
⇒ (p <loc e'')
⇒ (¬↑e'' ∈b X))
10. (prior(X)(e) <loc e) ∧ (↑prior(X)(e) ∈b X) ∧ (∀e'':E. ((e'' <loc e)
⇒ (prior(X)(e) <loc e'')
⇒ (¬↑e'' ∈b X)))
11. prior(X)(e) ∈ E
12. (p <loc prior(X)(e))
⊢ p = prior(X)(e) ∈ E
BY
{ (InstHyp [⌈prior(X)(e)⌉] (-4)⋅ THEN Auto)⋅ }
Latex:
Latex:
1. Info : Type
2. es : EO+(Info)
3. X : EClass(Top)
4. e : E
5. \muparrow{}e \mmember{}\msubb{} prior(X)
6. p : E
7. (p <loc e)
8. \muparrow{}p \mmember{}\msubb{} X
9. \mforall{}e'':E. ((e'' <loc e) {}\mRightarrow{} (p <loc e'') {}\mRightarrow{} (\mneg{}\muparrow{}e'' \mmember{}\msubb{} X))
10. (prior(X)(e) <loc e)
\mwedge{} (\muparrow{}prior(X)(e) \mmember{}\msubb{} X)
\mwedge{} (\mforall{}e'':E. ((e'' <loc e) {}\mRightarrow{} (prior(X)(e) <loc e'') {}\mRightarrow{} (\mneg{}\muparrow{}e'' \mmember{}\msubb{} X)))
11. prior(X)(e) \mmember{} E
12. (p <loc prior(X)(e))
\mvdash{} p = prior(X)(e)
By
Latex:
(InstHyp [\mkleeneopen{}prior(X)(e)\mkleeneclose{}] (-4)\mcdot{} THEN Auto)\mcdot{}
Home
Index