Step
*
1
2
1
of Lemma
tree-flow-convergent
1. Info : Type
2. es : EO+(Info)
3. X : EClass(Top)
4. f : E(X) ─→ E(X)
5. ∀x,y:E(X). ((¬((f x) = x ∈ E(X)))
⇒ (¬((f y) = y ∈ E(X)))
⇒ (loc(f x) = loc(f y) ∈ Id)
⇒ (loc(x) = loc(y) ∈ Id))
6. R : Id ─→ Id ─→ ℙ
7. Trans(Id;i,j.R[i;j])
8. Irrefl(Id;i,j.R[i;j])
9. ∀x:E(X). ((¬((f x) = x ∈ E))
⇒ R[loc(f x);loc(x)])
10. a : E(X)@i
11. a' : E(X)@i
12. z : E(X)@i
13. a = (f a') ∈ E(X)
14. ¬(a = a' ∈ E(X))
15. a' is f*(z)@i
16. (¬(a' = z ∈ E))
⇒ R[loc(a');loc(z)]@i
17. ¬(a = z ∈ E)@i
⊢ R[loc(a);loc(z)]
BY
{ (Assert R[loc(f a');loc(a')] BY
Auto) }
1
1. Info : Type
2. es : EO+(Info)
3. X : EClass(Top)
4. f : E(X) ─→ E(X)
5. ∀x,y:E(X). ((¬((f x) = x ∈ E(X)))
⇒ (¬((f y) = y ∈ E(X)))
⇒ (loc(f x) = loc(f y) ∈ Id)
⇒ (loc(x) = loc(y) ∈ Id))
6. R : Id ─→ Id ─→ ℙ
7. Trans(Id;i,j.R[i;j])
8. Irrefl(Id;i,j.R[i;j])
9. ∀x:E(X). ((¬((f x) = x ∈ E))
⇒ R[loc(f x);loc(x)])
10. a : E(X)@i
11. a' : E(X)@i
12. z : E(X)@i
13. a = (f a') ∈ E(X)
14. ¬(a = a' ∈ E(X))
15. a' is f*(z)@i
16. (¬(a' = z ∈ E))
⇒ R[loc(a');loc(z)]@i
17. ¬(a = z ∈ E)@i
18. R[loc(f a');loc(a')]
⊢ R[loc(a);loc(z)]
Latex:
1. Info : Type
2. es : EO+(Info)
3. X : EClass(Top)
4. f : E(X) {}\mrightarrow{} E(X)
5. \mforall{}x,y:E(X). ((\mneg{}((f x) = x)) {}\mRightarrow{} (\mneg{}((f y) = y)) {}\mRightarrow{} (loc(f x) = loc(f y)) {}\mRightarrow{} (loc(x) = loc(y)))
6. R : Id {}\mrightarrow{} Id {}\mrightarrow{} \mBbbP{}
7. Trans(Id;i,j.R[i;j])
8. Irrefl(Id;i,j.R[i;j])
9. \mforall{}x:E(X). ((\mneg{}((f x) = x)) {}\mRightarrow{} R[loc(f x);loc(x)])
10. a : E(X)@i
11. a' : E(X)@i
12. z : E(X)@i
13. a = (f a')
14. \mneg{}(a = a')
15. a' is f*(z)@i
16. (\mneg{}(a' = z)) {}\mRightarrow{} R[loc(a');loc(z)]@i
17. \mneg{}(a = z)@i
\mvdash{} R[loc(a);loc(z)]
By
(Assert R[loc(f a');loc(a')] BY
Auto)
Home
Index