Step * 1 1 1 5 of Lemma es-causl_weakening_p-locl

.....wf..... 
1. es EO@i'
2. E ─→ (E Top)@i
3. causal-predecessor(es;p)@i
4. : ℕ+@i
5. ∀e,e':E.  ((p-graph(E;p^1) e' e)  (e < e'))
6. ∀n:ℕ+((∀e,e':E.  ((p-graph(E;p^n) e' e)  (e < e')))  (∀e,e':E.  ((p-graph(E;p^n 1) e' e)  (e < e'))))
⊢ λn.∀e,e':E.  ((p-graph(E;p^n) e' e)  (e < e')) ∈ ℕ+ ─→ ℙ
BY
RepUR ``p-graph p-fun-exp p-compose p-id can-apply do-apply`` }

1
1. es EO@i'
2. E ─→ (E Top)@i
3. causal-predecessor(es;p)@i
4. : ℕ+@i
5. ∀e,e':E.  ((p-graph(E;p^1) e' e)  (e < e'))
6. ∀n:ℕ+((∀e,e':E.  ((p-graph(E;p^n) e' e)  (e < e')))  (∀e,e':E.  ((p-graph(E;p^n 1) e' e)  (e < e'))))
⊢ λn.∀e,e':E.
       (((↑isl(primrec(n;λx.(inl x);λi,g,x. if isl(g x) then outl(g x) else fi e'))
       c∧ (e outl(primrec(n;λx.(inl x);λi,g,x. if isl(g x) then outl(g x) else fi e') ∈ E))
        (e < e')) ∈ ℕ+ ─→ ℙ


Latex:


.....wf..... 
1.  es  :  EO@i'
2.  p  :  E  {}\mrightarrow{}  (E  +  Top)@i
3.  causal-predecessor(es;p)@i
4.  n  :  \mBbbN{}\msupplus{}@i
5.  \mforall{}e,e':E.    ((p-graph(E;p\^{}1)  e'  e)  {}\mRightarrow{}  (e  <  e'))
6.  \mforall{}n:\mBbbN{}\msupplus{}
          ((\mforall{}e,e':E.    ((p-graph(E;p\^{}n)  e'  e)  {}\mRightarrow{}  (e  <  e')))
          {}\mRightarrow{}  (\mforall{}e,e':E.    ((p-graph(E;p\^{}n  +  1)  e'  e)  {}\mRightarrow{}  (e  <  e'))))
\mvdash{}  \mlambda{}n.\mforall{}e,e':E.    ((p-graph(E;p\^{}n)  e'  e)  {}\mRightarrow{}  (e  <  e'))  \mmember{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbP{}


By

RepUR  ``p-graph  p-fun-exp  p-compose  p-id  can-apply  do-apply``  0




Home Index