Step
*
1
1
1
2
1
1
of Lemma
es-pred-maximal-base
1. es : EO@i'
2. ∀[e:es-base-E(es)]. (loc(e) ∈ Id)
3. ∀[e,e':es-base-E(es)]. ((e < e') ∈ ℙ)
4. es-eq(es) ∈ EqDecider(es-base-E(es))
5. ∀[e:es-base-E(es)]. (pred(e) ∈ es-base-E(es))
6. e : es-base-E(es)@i
7. ¬↑(es-dom(es) pred1(e))
8. ∀e1:es-base-E(es). ((e1 < e)
⇒ (∀e':E. ((loc(e') = loc(e1) ∈ Id)
⇒ (e' < e1)
⇒ (pred(e1) < e')
⇒ False)))
9. e' : E@i
10. loc(e') = loc(e) ∈ Id@i
11. (e' < e)@i
12. pred1(e) = e ∈ 𝔹
13. ↑pred1(e) = e
14. (e < e')@i
15. (e < e)
⊢ False
BY
{ (InstLemma `es-causal-antireflexive` [⌈es⌉;⌈e⌉]⋅ THEN Auto)⋅ }
Latex:
1. es : EO@i'
2. \mforall{}[e:es-base-E(es)]. (loc(e) \mmember{} Id)
3. \mforall{}[e,e':es-base-E(es)]. ((e < e') \mmember{} \mBbbP{})
4. es-eq(es) \mmember{} EqDecider(es-base-E(es))
5. \mforall{}[e:es-base-E(es)]. (pred(e) \mmember{} es-base-E(es))
6. e : es-base-E(es)@i
7. \mneg{}\muparrow{}(es-dom(es) pred1(e))
8. \mforall{}e1:es-base-E(es)
((e1 < e) {}\mRightarrow{} (\mforall{}e':E. ((loc(e') = loc(e1)) {}\mRightarrow{} (e' < e1) {}\mRightarrow{} (pred(e1) < e') {}\mRightarrow{} False)))
9. e' : E@i
10. loc(e') = loc(e)@i
11. (e' < e)@i
12. pred1(e) = e \mmember{} \mBbbB{}
13. \muparrow{}pred1(e) = e
14. (e < e')@i
15. (e < e)
\mvdash{} False
By
(InstLemma `es-causal-antireflexive` [\mkleeneopen{}es\mkleeneclose{};\mkleeneopen{}e\mkleeneclose{}]\mcdot{} THEN Auto)\mcdot{}
Home
Index