Step
*
1
1
of Lemma
not-pv11_p1_leq_bnum
1. ldrs_uid : Id ─→ ℤ@i
2. b : pv11_p1_Ballot_Num()@i
3. b' : pv11_p1_Ballot_Num()@i
4. Inj(Id;ℤ;ldrs_uid)@i
5. ¬↑(pv11_p1_leq_bnum(ldrs_uid) b b')@i
6. Order(pv11_p1_Ballot_Num();b1,b2.↑(pv11_p1_leq_bnum(ldrs_uid) b1 b2))
7. Connex(pv11_p1_Ballot_Num();b1,b2.↑(pv11_p1_leq_bnum(ldrs_uid) b1 b2))
⊢ ↑(b' < b)
BY
{ UnfoldTopAb (-1) }
1
1. ldrs_uid : Id ─→ ℤ@i
2. b : pv11_p1_Ballot_Num()@i
3. b' : pv11_p1_Ballot_Num()@i
4. Inj(Id;ℤ;ldrs_uid)@i
5. ¬↑(pv11_p1_leq_bnum(ldrs_uid) b b')@i
6. Order(pv11_p1_Ballot_Num();b1,b2.↑(pv11_p1_leq_bnum(ldrs_uid) b1 b2))
7. ∀b1,b2:pv11_p1_Ballot_Num(). ((↑(pv11_p1_leq_bnum(ldrs_uid) b1 b2)) ∨ (↑(pv11_p1_leq_bnum(ldrs_uid) b2 b1)))
⊢ ↑(b' < b)
Latex:
Latex:
1. ldrs$_{uid}$ : Id {}\mrightarrow{} \mBbbZ{}@i
2. b : pv11\_p1\_Ballot\_Num()@i
3. b' : pv11\_p1\_Ballot\_Num()@i
4. Inj(Id;\mBbbZ{};ldrs$_{uid}$)@i
5. \mneg{}\muparrow{}(pv11\_p1\_leq\_bnum(ldrs$_{uid}$) b b')@i
6. Order(pv11\_p1\_Ballot\_Num();b1,b2.\muparrow{}(pv11\_p1\_leq\_bnum(ldrs$_{uid}$) b1 b2))
7. Connex(pv11\_p1\_Ballot\_Num();b1,b2.\muparrow{}(pv11\_p1\_leq\_bnum(ldrs$_{uid}$) b1 b2))
\mvdash{} \muparrow{}(b' < b)
By
Latex:
UnfoldTopAb (-1)
Home
Index