Step
*
1
1
2
1
of Lemma
sv-bag-is-bag-rep
1. A : Type
2. as : bag(A)
3. single-valued-bag(as;A)
4. a : A@i
5. a ↓∈ as@i
6. single-valued-list(as;A)
7. as ∈ A List
8. single-valued-list(bag-rep(#(as);a);A)
9. ∀a1,a2:ℕ||as||.  ((a1 = a2 ∈ ℕ||as||) 
⇒ (a1 = a2 ∈ ℕ||as||))
⊢ bag-rep(#(as);a) = (as o λx.x) ∈ (A List)
BY
{ Assert ⌈||bag-rep(#(as);a)|| = ||as|| ∈ ℤ⌉⋅ }
1
.....assertion..... 
1. A : Type
2. as : bag(A)
3. single-valued-bag(as;A)
4. a : A@i
5. a ↓∈ as@i
6. single-valued-list(as;A)
7. as ∈ A List
8. single-valued-list(bag-rep(#(as);a);A)
9. ∀a1,a2:ℕ||as||.  ((a1 = a2 ∈ ℕ||as||) 
⇒ (a1 = a2 ∈ ℕ||as||))
⊢ ||bag-rep(#(as);a)|| = ||as|| ∈ ℤ
2
1. A : Type
2. as : bag(A)
3. single-valued-bag(as;A)
4. a : A@i
5. a ↓∈ as@i
6. single-valued-list(as;A)
7. as ∈ A List
8. single-valued-list(bag-rep(#(as);a);A)
9. ∀a1,a2:ℕ||as||.  ((a1 = a2 ∈ ℕ||as||) 
⇒ (a1 = a2 ∈ ℕ||as||))
10. ||bag-rep(#(as);a)|| = ||as|| ∈ ℤ
⊢ bag-rep(#(as);a) = (as o λx.x) ∈ (A List)
Latex:
Latex:
1.  A  :  Type
2.  as  :  bag(A)
3.  single-valued-bag(as;A)
4.  a  :  A@i
5.  a  \mdownarrow{}\mmember{}  as@i
6.  single-valued-list(as;A)
7.  as  \mmember{}  A  List
8.  single-valued-list(bag-rep(\#(as);a);A)
9.  \mforall{}a1,a2:\mBbbN{}||as||.    ((a1  =  a2)  {}\mRightarrow{}  (a1  =  a2))
\mvdash{}  bag-rep(\#(as);a)  =  (as  o  \mlambda{}x.x)
By
Latex:
Assert  \mkleeneopen{}||bag-rep(\#(as);a)||  =  ||as||\mkleeneclose{}\mcdot{}
Home
Index