Step
*
1
1
1
1
of Lemma
bounded-expectation
1. p : FinProbSpace@i
2. f : ℕ ─→ ℕ@i
3. X : n:ℕ ─→ RandomVariable(p;f[n])@i
4. B : ℚ@i
5. ∀n:ℕ. ∀i:ℕn. f[i] < f[n]
6. ∀n:ℕ. ∀i:ℕn. X[i] ≤ X[n]
7. 0 < B
8. ∀n:ℕ. (0 ≤ X[n] ∧ E(f[n];X[n]) < B)
9. q : ℚ@i
10. 0 < q@i
11. ¬(q = 0 ∈ ℚ)
⊢ ∃b:ℚ. ∀n:ℕ. E(f[n];b ≤ X[n]) < q
BY
{ (Assert 0 < (B/q) BY
(QMul ⌈(1/q)⌉ 7⋅
THEN (Auto THEN Try ((BLemma `qinv-positive` THEN Auto)))
THEN All (Unfold `qdiv`)
THEN (QNorm (0) THENM QNorm (-1))
THEN Auto
THEN RW assert_pushdownC 0
THEN Auto))⋅ }
1
1. p : FinProbSpace@i
2. f : ℕ ─→ ℕ@i
3. X : n:ℕ ─→ RandomVariable(p;f[n])@i
4. B : ℚ@i
5. ∀n:ℕ. ∀i:ℕn. f[i] < f[n]
6. ∀n:ℕ. ∀i:ℕn. X[i] ≤ X[n]
7. 0 < B
8. ∀n:ℕ. (0 ≤ X[n] ∧ E(f[n];X[n]) < B)
9. q : ℚ@i
10. 0 < q@i
11. ¬(q = 0 ∈ ℚ)
12. 0 < (B/q)
⊢ ∃b:ℚ. ∀n:ℕ. E(f[n];b ≤ X[n]) < q
Latex:
1. p : FinProbSpace@i
2. f : \mBbbN{} {}\mrightarrow{} \mBbbN{}@i
3. X : n:\mBbbN{} {}\mrightarrow{} RandomVariable(p;f[n])@i
4. B : \mBbbQ{}@i
5. \mforall{}n:\mBbbN{}. \mforall{}i:\mBbbN{}n. f[i] < f[n]
6. \mforall{}n:\mBbbN{}. \mforall{}i:\mBbbN{}n. X[i] \mleq{} X[n]
7. 0 < B
8. \mforall{}n:\mBbbN{}. (0 \mleq{} X[n] \mwedge{} E(f[n];X[n]) < B)
9. q : \mBbbQ{}@i
10. 0 < q@i
11. \mneg{}(q = 0)
\mvdash{} \mexists{}b:\mBbbQ{}. \mforall{}n:\mBbbN{}. E(f[n];b \mleq{} X[n]) < q
By
(Assert 0 < (B/q) BY
(QMul \mkleeneopen{}(1/q)\mkleeneclose{} 7\mcdot{}
THEN (Auto THEN Try ((BLemma `qinv-positive` THEN Auto)))
THEN All (Unfold `qdiv`)
THEN (QNorm (0) THENM QNorm (-1))
THEN Auto
THEN RW assert\_pushdownC 0
THEN Auto))\mcdot{}
Home
Index