Step
*
1
2
1
1
of Lemma
bounded-expectation
1. p : FinProbSpace@i
2. f : ℕ ─→ ℕ@i
3. X : n:ℕ ─→ RandomVariable(p;f[n])@i
4. B : ℚ@i
5. ∀n:ℕ. ∀i:ℕn. f[i] < f[n]
6. ∀n:ℕ. ∀i:ℕn. X[i] ≤ X[n]
7. 0 < B
8. ∀n:ℕ. (0 ≤ X[n] ∧ E(f[n];X[n]) < B)
9. ∀q:ℚ. (0 < q
⇒ (∃b:ℚ. ∀n:ℕ. E(f[n];b ≤ X[n]) < q))
10. q : ℚ@i
11. 0 < q@i
12. b : ℚ
13. ∀n:ℕ. E(f[n];b ≤ X[n]) < q
⊢ ∃C:p-open(p). (measure(C) ≤ q ∧ (∀s:ℕ ─→ Outcome. ((∃n:ℕ. (b ≤ (X[n] s)))
⇒ s ∈ C)))
BY
{ Assert ⌈∀n:ℕ. ∀s:ℕn ─→ Outcome. Dec(∃i:ℕn. (f[i] < n c∧ (b ≤ (X[i] s))))⌉⋅ }
1
.....assertion.....
1. p : FinProbSpace@i
2. f : ℕ ─→ ℕ@i
3. X : n:ℕ ─→ RandomVariable(p;f[n])@i
4. B : ℚ@i
5. ∀n:ℕ. ∀i:ℕn. f[i] < f[n]
6. ∀n:ℕ. ∀i:ℕn. X[i] ≤ X[n]
7. 0 < B
8. ∀n:ℕ. (0 ≤ X[n] ∧ E(f[n];X[n]) < B)
9. ∀q:ℚ. (0 < q
⇒ (∃b:ℚ. ∀n:ℕ. E(f[n];b ≤ X[n]) < q))
10. q : ℚ@i
11. 0 < q@i
12. b : ℚ
13. ∀n:ℕ. E(f[n];b ≤ X[n]) < q
⊢ ∀n:ℕ. ∀s:ℕn ─→ Outcome. Dec(∃i:ℕn. (f[i] < n c∧ (b ≤ (X[i] s))))
2
1. p : FinProbSpace@i
2. f : ℕ ─→ ℕ@i
3. X : n:ℕ ─→ RandomVariable(p;f[n])@i
4. B : ℚ@i
5. ∀n:ℕ. ∀i:ℕn. f[i] < f[n]
6. ∀n:ℕ. ∀i:ℕn. X[i] ≤ X[n]
7. 0 < B
8. ∀n:ℕ. (0 ≤ X[n] ∧ E(f[n];X[n]) < B)
9. ∀q:ℚ. (0 < q
⇒ (∃b:ℚ. ∀n:ℕ. E(f[n];b ≤ X[n]) < q))
10. q : ℚ@i
11. 0 < q@i
12. b : ℚ
13. ∀n:ℕ. E(f[n];b ≤ X[n]) < q
14. ∀n:ℕ. ∀s:ℕn ─→ Outcome. Dec(∃i:ℕn. (f[i] < n c∧ (b ≤ (X[i] s))))
⊢ ∃C:p-open(p). (measure(C) ≤ q ∧ (∀s:ℕ ─→ Outcome. ((∃n:ℕ. (b ≤ (X[n] s)))
⇒ s ∈ C)))
Latex:
1. p : FinProbSpace@i
2. f : \mBbbN{} {}\mrightarrow{} \mBbbN{}@i
3. X : n:\mBbbN{} {}\mrightarrow{} RandomVariable(p;f[n])@i
4. B : \mBbbQ{}@i
5. \mforall{}n:\mBbbN{}. \mforall{}i:\mBbbN{}n. f[i] < f[n]
6. \mforall{}n:\mBbbN{}. \mforall{}i:\mBbbN{}n. X[i] \mleq{} X[n]
7. 0 < B
8. \mforall{}n:\mBbbN{}. (0 \mleq{} X[n] \mwedge{} E(f[n];X[n]) < B)
9. \mforall{}q:\mBbbQ{}. (0 < q {}\mRightarrow{} (\mexists{}b:\mBbbQ{}. \mforall{}n:\mBbbN{}. E(f[n];b \mleq{} X[n]) < q))
10. q : \mBbbQ{}@i
11. 0 < q@i
12. b : \mBbbQ{}
13. \mforall{}n:\mBbbN{}. E(f[n];b \mleq{} X[n]) < q
\mvdash{} \mexists{}C:p-open(p). (measure(C) \mleq{} q \mwedge{} (\mforall{}s:\mBbbN{} {}\mrightarrow{} Outcome. ((\mexists{}n:\mBbbN{}. (b \mleq{} (X[n] s))) {}\mRightarrow{} s \mmember{} C)))
By
Assert \mkleeneopen{}\mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} Outcome. Dec(\mexists{}i:\mBbbN{}n. (f[i] < n c\mwedge{} (b \mleq{} (X[i] s))))\mkleeneclose{}\mcdot{}
Home
Index