Step
*
of Lemma
slln-lemma2
∀p:FinProbSpace. ∀f:ℕ ─→ ℕ. ∀X:n:ℕ ─→ RandomVariable(p;f[n]). ∀s,k:ℚ.
((∀n:ℕ. ∀i:ℕn. rv-disjoint(p;f[n];X[i];X[n]))
⇒ (∃B:ℚ
∀n:ℕ
(E(f[n];rv-partial-sum(n;k.if (k =z 0)
then 0
else (x.(x * x) * x * x) o (1/k)*rv-partial-sum(k;i.X[i])
fi )) ≤ B))) supposing
((∀n:ℕ
((E(f[n];X[n]) = 0 ∈ ℚ)
∧ (E(f[n];(x.x * x) o X[n]) = s ∈ ℚ)
∧ (E(f[n];(x.(x * x) * x * x) o X[n]) = k ∈ ℚ))) and
(∀n:ℕ. ∀i:ℕn. f[i] < f[n]))
BY
{ (Auto
THEN Try (((Assert f[i] < f[n] BY Auto) THEN (Assert ||p|| ∈ ℕ BY (DVar`p' THEN Auto)) THEN DoSubsume THEN Auto))
THEN (InstLemma `slln-lemma1` [⌈p⌉;⌈f⌉;⌈X⌉;⌈s⌉;⌈k⌉]⋅ THENA Auto)
THEN ExRepD
THEN (InstConcl [⌈2 * B⌉]⋅ THENA Auto)
THEN Using [`p',⌈p⌉;`f',⌈f⌉] Auto⋅
THEN Try ((Unfold `label` 0 THEN (RWO "int-eq-in-rationals" (-1)) THEN Auto))) }
1
1. p : FinProbSpace@i
2. f : ℕ ─→ ℕ@i
3. X : n:ℕ ─→ RandomVariable(p;f[n])@i
4. s : ℚ@i
5. k : ℚ@i
6. ∀n:ℕ. ∀i:ℕn. f[i] < f[n]
7. ∀n:ℕ. ((E(f[n];X[n]) = 0 ∈ ℚ) ∧ (E(f[n];(x.x * x) o X[n]) = s ∈ ℚ) ∧ (E(f[n];(x.(x * x) * x * x) o X[n]) = k ∈ ℚ))
8. ∀n:ℕ. ∀i:ℕn. rv-disjoint(p;f[n];X[i];X[n])@i
9. B : ℚ
10. 0 ≤ B
11. ∀n:ℕ. (E(f[n];(x.(x * x) * x * x) o rv-partial-sum(n;i.X[i])) ≤ (B * n * n))
12. n : ℕ@i
⊢ E(f[n];rv-partial-sum(n;k.if (k =z 0) then 0 else (x.(x * x) * x * x) o (1/k)*rv-partial-sum(k;i.X[i]) fi )) ≤ (2 * B)
Latex:
\mforall{}p:FinProbSpace. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \mforall{}X:n:\mBbbN{} {}\mrightarrow{} RandomVariable(p;f[n]). \mforall{}s,k:\mBbbQ{}.
((\mforall{}n:\mBbbN{}. \mforall{}i:\mBbbN{}n. rv-disjoint(p;f[n];X[i];X[n]))
{}\mRightarrow{} (\mexists{}B:\mBbbQ{}
\mforall{}n:\mBbbN{}
(E(f[n];rv-partial-sum(n;k.if (k =\msubz{} 0)
then 0
else (x.(x * x) * x * x) o (1/k)*rv-partial-sum(k;i.X[i])
fi )) \mleq{} B))) supposing
((\mforall{}n:\mBbbN{}
((E(f[n];X[n]) = 0)
\mwedge{} (E(f[n];(x.x * x) o X[n]) = s)
\mwedge{} (E(f[n];(x.(x * x) * x * x) o X[n]) = k))) and
(\mforall{}n:\mBbbN{}. \mforall{}i:\mBbbN{}n. f[i] < f[n]))
By
(Auto
THEN Try (((Assert f[i] < f[n] BY
Auto)
THEN (Assert ||p|| \mmember{} \mBbbN{} BY
(DVar`p' THEN Auto))
THEN DoSubsume
THEN Auto))
THEN (InstLemma `slln-lemma1` [\mkleeneopen{}p\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}s\mkleeneclose{};\mkleeneopen{}k\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ExRepD
THEN (InstConcl [\mkleeneopen{}2 * B\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Using [`p',\mkleeneopen{}p\mkleeneclose{};`f',\mkleeneopen{}f\mkleeneclose{}] Auto\mcdot{}
THEN Try ((Unfold `label` 0 THEN (RWO "int-eq-in-rationals" (-1)) THEN Auto)))
Home
Index