Step
*
of Lemma
strong-law-of-large-numbers
∀p:FinProbSpace. ∀f:ℕ ─→ ℕ. ∀X:n:ℕ ─→ RandomVariable(p;f[n]).
(rv-iid(p;n.f[n];n.X[n])
⇒ (∀mean:ℚ
nullset(p;λs.∃q:ℚ. (0 < q ∧ (∀n:ℕ. ∃m:ℕ. (n < m ∧ (q ≤ |Σ0 ≤ i < m. (1/m) * (X[i] s) - mean|)))))
supposing E(f[0];X[0]) = mean ∈ ℚ))
BY
{ (InstLemma `slln-lemma4` []
THEN RepeatFor 2 ((ParallelLast THEN (Thin (-3))))
THEN Auto
THEN ((InstHyp [⌈λ2i.X[i] + -(mean)⌉] (3))⋅ THENA Auto)
THEN Try ((BLemma `rv-iid-add-const` THEN Auto))
THEN Try (((RWO "expectation-rv-add" 0 THENA Auto)
THEN (RWO "expectation-rv-const" 0 THENA Auto)
THEN (HypSubst' -1 0 THENA Auto)
THEN QNorm 0))) }
1
1. p : FinProbSpace@i
2. f : ℕ ─→ ℕ@i
3. ∀X:n:ℕ ─→ RandomVariable(p;f[n])
(rv-iid(p;n.f[n];n.X[n])
⇒ nullset(p;λs.∃q:ℚ. (0 < q ∧ (∀n:ℕ. ∃m:ℕ. (n < m ∧ (q ≤ |Σ0 ≤ i < m. (1/m) * (X[i] s)|)))))
supposing E(f[0];X[0]) = 0 ∈ ℚ)
4. X : n:ℕ ─→ RandomVariable(p;f[n])@i
5. rv-iid(p;n.f[n];n.X[n])@i
6. mean : ℚ@i
7. E(f[0];X[0]) = mean ∈ ℚ
8. nullset(p;λs.∃q:ℚ. (0 < q ∧ (∀n:ℕ. ∃m:ℕ. (n < m ∧ (q ≤ |Σ0 ≤ i < m. (1/m) * (X[i] + -(mean) s)|)))))
⊢ nullset(p;λs.∃q:ℚ. (0 < q ∧ (∀n:ℕ. ∃m:ℕ. (n < m ∧ (q ≤ |Σ0 ≤ i < m. (1/m) * (X[i] s) - mean|)))))
Latex:
\mforall{}p:FinProbSpace. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \mforall{}X:n:\mBbbN{} {}\mrightarrow{} RandomVariable(p;f[n]).
(rv-iid(p;n.f[n];n.X[n])
{}\mRightarrow{} (\mforall{}mean:\mBbbQ{}
nullset(p;\mlambda{}s.\mexists{}q:\mBbbQ{}
(0 < q
\mwedge{} (\mforall{}n:\mBbbN{}. \mexists{}m:\mBbbN{}. (n < m \mwedge{} (q \mleq{} |\mSigma{}0 \mleq{} i < m. (1/m) * (X[i] s) - mean|)))))
supposing E(f[0];X[0]) = mean))
By
(InstLemma `slln-lemma4` []
THEN RepeatFor 2 ((ParallelLast THEN (Thin (-3))))
THEN Auto
THEN ((InstHyp [\mkleeneopen{}\mlambda{}\msubtwo{}i.X[i] + -(mean)\mkleeneclose{}] (3))\mcdot{} THENA Auto)
THEN Try ((BLemma `rv-iid-add-const` THEN Auto))
THEN Try (((RWO "expectation-rv-add" 0 THENA Auto)
THEN (RWO "expectation-rv-const" 0 THENA Auto)
THEN (HypSubst' -1 0 THENA Auto)
THEN QNorm 0)))
Home
Index