Nuprl Lemma : Game-add-assoc

G,H,K:Game.  G ⊕ H ⊕ K ≡ G ⊕ H ⊕ K


Proof




Definitions occuring in Statement :  eq-Game: G ≡ H Game-add: G ⊕ H Game: Game all: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T prop: so_apply: x[s] implies:  Q all: x:A. B[x] eq-Game: G ≡ H and: P ∧ Q cand: c∧ B Game-add: G ⊕ H right-indices: right-indices(g) left-indices: left-indices(g) mkGame: {mkGame(f[a] with a:L g[b] with b:R} Wsup: Wsup(a;b) pi1: fst(t) top: Top pi2: snd(t) guard: {T} exists: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a right-option: right-option{i:l}(g;m) left-option: left-option{i:l}(g;m) or: P ∨ Q
Lemmas referenced :  Game-induction all_wf Game_wf eq-Game_wf Game-add_wf left_move_add_inl_lemma left_move_add_inr_lemma left-indices_wf right_move_add_inl_lemma right_move_add_inr_lemma right-indices_wf or_wf left-option_wf right-option_wf subtype_rel_union left-move_wf equal_wf exists_wf right-move_wf eq-Game_inversion
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin sqequalRule lambdaEquality instantiate hypothesis cumulativity hypothesisEquality independent_functionElimination lambdaFormation independent_pairFormation unionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality functionEquality because_Cache dependent_pairFormation inlEquality applyEquality unionEquality independent_isectElimination inlFormation inrEquality inrFormation

Latex:
\mforall{}G,H,K:Game.    G  \moplus{}  H  \moplus{}  K  \mequiv{}  G  \moplus{}  H  \moplus{}  K



Date html generated: 2018_05_22-PM-09_53_38
Last ObjectModification: 2018_05_20-PM-10_41_43

Theory : Numbers!and!Games


Home Index