Nuprl Lemma : cosetTC-unique
∀a,s:coSet{i:l}.
  ((a ⊆ s)
  ⇒ transitive-set(s)
  ⇒ (∀s':coSet{i:l}. ((a ⊆ s') ⇒ transitive-set(s') ⇒ (s ⊆ s')))
  ⇒ seteq(s;cosetTC(a)))
Proof
Definitions occuring in Statement : 
transitive-set: transitive-set(s), 
setsubset: (a ⊆ b), 
cosetTC: cosetTC(a), 
seteq: seteq(s1;s2), 
coSet: coSet{i:l}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
cand: A c∧ B, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
transitive-set_wf, 
setsubset_wf, 
coSet_wf, 
all_wf, 
cosetTC-least, 
cosetTC-transitive, 
cosetTC-contains, 
cosetTC_wf, 
seteq-iff-setsubset
Rules used in proof : 
functionEquality, 
cumulativity, 
lambdaEquality, 
sqequalRule, 
instantiate, 
because_Cache, 
independent_pairFormation, 
independent_functionElimination, 
productElimination, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a,s:coSet\{i:l\}.
    ((a  \msubseteq{}  s)
    {}\mRightarrow{}  transitive-set(s)
    {}\mRightarrow{}  (\mforall{}s':coSet\{i:l\}.  ((a  \msubseteq{}  s')  {}\mRightarrow{}  transitive-set(s')  {}\mRightarrow{}  (s  \msubseteq{}  s')))
    {}\mRightarrow{}  seteq(s;cosetTC(a)))
Date html generated:
2018_07_29-AM-10_03_14
Last ObjectModification:
2018_07_18-PM-08_49_26
Theory : constructive!set!theory
Home
Index