Nuprl Lemma : cosetTC-contains
∀a:coSet{i:l}. (a ⊆ cosetTC(a))
Proof
Definitions occuring in Statement : 
setsubset: (a ⊆ b), 
cosetTC: cosetTC(a), 
coSet: coSet{i:l}, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
cosetTC: cosetTC(a), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
setmem: (x ∈ s), 
coWmem: coWmem(a.B[a];z;w), 
exists: ∃x:A. B[x], 
seteq: seteq(s1;s2), 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
copath-length: copath-length(p), 
pi1: fst(t), 
copath-cons: copath-cons(b;x), 
copath-nil: (), 
true: True, 
and: P ∧ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
coSet: coSet{i:l}, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
copath-at: copath-at(w;p), 
coPath-at: coPath-at(n;w;p), 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
bfalse: ff, 
subtract: n - m, 
btrue: tt, 
coW-item: coW-item(w;b), 
pi2: snd(t), 
prop: ℙ, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q
Lemmas referenced : 
setmem-mk-coset, 
istype-void, 
copath-cons_wf, 
istype-universe, 
copath-nil_wf, 
coW-item_wf, 
istype-less_than, 
copath-length_wf, 
coW-equiv_wf, 
copath-at_wf, 
setmem_wf, 
coSet_wf, 
setsubset-iff, 
cosetTC_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
sqequalRule, 
productElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
natural_numberEquality, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
dependent_set_memberEquality_alt, 
universeEquality, 
lambdaEquality_alt, 
instantiate, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}a:coSet\{i:l\}.  (a  \msubseteq{}  cosetTC(a))
Date html generated:
2019_10_31-AM-06_33_50
Last ObjectModification:
2018_12_13-PM-02_29_30
Theory : constructive!set!theory
Home
Index