Nuprl Lemma : coW-equiv_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w,w':coW(A;a.B[a])].  (coW-equiv(a.B[a];w;w') ∈ ℙ)
Proof
Definitions occuring in Statement : 
coW-equiv: coW-equiv(a.B[a];w;w')
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
coW-equiv: coW-equiv(a.B[a];w;w')
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
win2_wf, 
coW-game_wf, 
coW_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
cumulativity, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w,w':coW(A;a.B[a])].    (coW-equiv(a.B[a];w;w')  \mmember{}  \mBbbP{})
Date html generated:
2018_07_25-PM-01_42_34
Last ObjectModification:
2018_06_12-PM-01_52_11
Theory : co-recursion
Home
Index