Nuprl Lemma : coW-equiv_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w,w':coW(A;a.B[a])].  (coW-equiv(a.B[a];w;w') ∈ ℙ)


Proof




Definitions occuring in Statement :  coW-equiv: coW-equiv(a.B[a];w;w') coW: coW(A;a.B[a]) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T coW-equiv: coW-equiv(a.B[a];w;w') so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  win2_wf coW-game_wf coW_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry instantiate cumulativity isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w,w':coW(A;a.B[a])].    (coW-equiv(a.B[a];w;w')  \mmember{}  \mBbbP{})



Date html generated: 2018_07_25-PM-01_42_34
Last ObjectModification: 2018_06_12-PM-01_52_11

Theory : co-recursion


Home Index