Nuprl Lemma : coW_wf
∀[A:Type]. ∀[B:A ⟶ Type].  (coW(A;a.B[a]) ∈ Type)
Proof
Definitions occuring in Statement : 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
coW: coW(A;a.B[a])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
param-co-W_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
because_Cache
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (coW(A;a.B[a])  \mmember{}  Type)
Date html generated:
2018_07_25-PM-01_37_08
Last ObjectModification:
2018_05_31-PM-04_21_12
Theory : co-recursion
Home
Index