Nuprl Lemma : coW_wf

[A:Type]. ∀[B:A ⟶ Type].  (coW(A;a.B[a]) ∈ Type)


Proof




Definitions occuring in Statement :  coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T coW: coW(A;a.B[a]) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  param-co-W_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality hypothesisEquality isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (coW(A;a.B[a])  \mmember{}  Type)



Date html generated: 2018_07_25-PM-01_37_08
Last ObjectModification: 2018_05_31-PM-04_21_12

Theory : co-recursion


Home Index