Nuprl Lemma : coW-game_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w,w':coW(A;a.B[a])].  (coW-game(a.B[a];w;w') ∈ SimpleGame)


Proof




Definitions occuring in Statement :  coW-game: coW-game(a.B[a];w;w') coW: coW(A;a.B[a]) simple-game: SimpleGame uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T coW-game: coW-game(a.B[a];w;w') simple-game: SimpleGame so_lambda: λ2x.t[x] so_apply: x[s] prop: and: P ∧ Q or: P ∨ Q subtype_rel: A ⊆B nat:
Lemmas referenced :  copath_wf copath-nil_wf or_wf copathAgree_wf equal_wf copath-length_wf nat_wf coW_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_pairEquality productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis independent_pairEquality spreadEquality intEquality setElimination rename because_Cache cumulativity functionEquality universeEquality axiomEquality equalityTransitivity equalitySymmetry instantiate isect_memberEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w,w':coW(A;a.B[a])].    (coW-game(a.B[a];w;w')  \mmember{}  SimpleGame)



Date html generated: 2018_07_25-PM-01_42_27
Last ObjectModification: 2018_06_05-AM-11_46_52

Theory : co-recursion


Home Index