Nuprl Lemma : copath-nil_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  (() ∈ copath(a.B[a];w))


Proof




Definitions occuring in Statement :  copath-nil: () copath: copath(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] top: Top btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) coPath: coPath(a.B[a];w;n) unit: Unit subtype_rel: A ⊆B prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: copath: copath(a.B[a];w) copath-nil: () member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW_wf coPath_wf equal-wf-base it_wf le_wf false_wf
Rules used in proof :  universeEquality functionEquality cumulativity instantiate equalitySymmetry equalityTransitivity axiomEquality because_Cache baseClosed intEquality voidEquality voidElimination isect_memberEquality lambdaEquality applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis lambdaFormation independent_pairFormation natural_numberEquality dependent_set_memberEquality dependent_pairEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    (()  \mmember{}  copath(a.B[a];w))



Date html generated: 2018_07_25-PM-01_39_29
Last ObjectModification: 2018_06_26-AM-00_25_50

Theory : co-recursion


Home Index