Nuprl Lemma : copath-nil_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  (() ∈ copath(a.B[a];w))
Proof
Definitions occuring in Statement : 
copath-nil: ()
, 
copath: copath(a.B[a];w)
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
eq_int: (i =z j)
, 
coPath: coPath(a.B[a];w;n)
, 
unit: Unit
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
copath: copath(a.B[a];w)
, 
copath-nil: ()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coW_wf, 
coPath_wf, 
equal-wf-base, 
it_wf, 
le_wf, 
false_wf
Rules used in proof : 
universeEquality, 
functionEquality, 
cumulativity, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
baseClosed, 
intEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
dependent_pairEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    (()  \mmember{}  copath(a.B[a];w))
Date html generated:
2018_07_25-PM-01_39_29
Last ObjectModification:
2018_06_26-AM-00_25_50
Theory : co-recursion
Home
Index