Nuprl Lemma : set-predicate-iff

[s:Set{i:l}]. ∀[P:{x:Set{i:l}| (x ∈ s)}  ⟶ ℙ'].
  (set-predicate{i:l}(s;x.P[x]) ⇐⇒ ∀a1,a2:Set{i:l}.  ((a1 ∈ s)  (a2 ∈ s)  seteq(a1;a2)  P[a1]  P[a2]))


Proof




Definitions occuring in Statement :  set-predicate: set-predicate{i:l}(s;a.P[a]) Set: Set{i:l} setmem: (x ∈ s) seteq: seteq(s1;s2) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  guard: {T} exists: x:A. B[x] uimplies: supposing a all: x:A. B[x] set-predicate: set-predicate{i:l}(s;a.P[a]) rev_implies:  Q subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x]
Lemmas referenced :  coSet_wf coSet-mem-Set-implies-Set set-subtype-coSet seteq_wf all_wf setmem_wf Set_wf set-predicate_wf2
Rules used in proof :  independent_functionElimination dependent_pairFormation independent_isectElimination dependent_functionElimination universeEquality dependent_set_memberEquality functionEquality instantiate because_Cache cumulativity hypothesis setEquality applyEquality lambdaEquality sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation independent_pairFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[s:Set\{i:l\}].  \mforall{}[P:\{x:Set\{i:l\}|  (x  \mmember{}  s)\}    {}\mrightarrow{}  \mBbbP{}'].
    (set-predicate\{i:l\}(s;x.P[x])
    \mLeftarrow{}{}\mRightarrow{}  \mforall{}a1,a2:Set\{i:l\}.    ((a1  \mmember{}  s)  {}\mRightarrow{}  (a2  \mmember{}  s)  {}\mRightarrow{}  seteq(a1;a2)  {}\mRightarrow{}  P[a1]  {}\mRightarrow{}  P[a2]))



Date html generated: 2018_07_29-AM-09_52_12
Last ObjectModification: 2018_07_18-AM-10_10_43

Theory : constructive!set!theory


Home Index