Nuprl Lemma : setmem-piset-1
∀A:coSet{i:l}. ∀B:{a:coSet{i:l}| (a ∈ A)}  ⟶ coSet{i:l}. ∀x:coSet{i:l}.
  ((x ∈ piset(A;a.B[a]))
  ⇐⇒ ∃f:t:set-dom(A) ⟶ set-dom(B[set-item(A;t)])
       ∀z:coSet{i:l}. ((z ∈ x) ⇐⇒ ∃t:set-dom(A). seteq(z;(set-item(A;t),set-item(B[set-item(A;t)];f t)))))
Proof
Definitions occuring in Statement : 
piset: piset(A;a.B[a]), 
orderedpairset: (a,b), 
setmem: (x ∈ s), 
seteq: seteq(s1;s2), 
set-item: set-item(s;x), 
set-dom: set-dom(s), 
coSet: coSet{i:l}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uimplies: b supposing a, 
pi2: snd(t), 
pi1: fst(t), 
set-dom: set-dom(s), 
set-item: set-item(s;x), 
guard: {T}, 
top: Top, 
mk-coset: mk-coset(T;f), 
piset: piset(A;a.B[a]), 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x], 
rev_implies: P ⇐ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
subtype_rel-equal, 
co-seteq-iff, 
subtype_rel_self, 
seteq_weakening, 
setmem_functionality, 
mk-coset_wf, 
setmem-coset, 
setmem-mk-coset, 
coSet_subtype, 
subtype_coSet, 
orderedpairset_wf, 
seteq_wf, 
iff_wf, 
all_wf, 
set-item_wf, 
set-item-mem, 
set-dom_wf, 
exists_wf, 
coSet_wf, 
piset_wf, 
setmem_wf
Rules used in proof : 
setElimination, 
independent_isectElimination, 
impliesLevelFunctionality, 
andLevelFunctionality, 
allLevelFunctionality, 
independent_functionElimination, 
impliesFunctionality, 
allFunctionality, 
existsFunctionality, 
addLevel, 
dependent_pairFormation, 
rename, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
dependent_functionElimination, 
because_Cache, 
functionExtensionality, 
universeEquality, 
functionEquality, 
instantiate, 
productElimination, 
cumulativity, 
hypothesis, 
setEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}B:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  coSet\{i:l\}.  \mforall{}x:coSet\{i:l\}.
    ((x  \mmember{}  piset(A;a.B[a]))
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}f:t:set-dom(A)  {}\mrightarrow{}  set-dom(B[set-item(A;t)])
              \mforall{}z:coSet\{i:l\}
                  ((z  \mmember{}  x)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}t:set-dom(A).  seteq(z;(set-item(A;t),set-item(B[set-item(A;t)];f  t)))))
Date html generated:
2018_07_29-AM-10_04_31
Last ObjectModification:
2018_07_18-PM-04_20_32
Theory : constructive!set!theory
Home
Index