Step
*
2
1
2
of Lemma
adjacent-compatible-iff
1. [X] : CubicalSet
2. I : Cname List
3. L : I-face(X;I) List
4. ∀f1,f2:I-face(X;I).
     ((f1 ∈ L)
     
⇒ (f2 ∈ L)
     
⇒ (¬(dimension(f1) = dimension(f2) ∈ Cname))
     
⇒ ((dimension(f2):=direction(f2))(cube(f1))
        = (dimension(f1):=direction(f1))(cube(f2))
        ∈ X(I-[dimension(f1); dimension(f2)])))
5. i : ℕ||L||
6. j : ℕi
7. ¬(dimension(L[j]) = dimension(L[i]) ∈ Cname)
⊢ face-compatible(X;I;L[j];L[i])
BY
{ (FHyp 4 [-1] THEN Auto) }
1
1. [X] : CubicalSet
2. I : Cname List
3. L : I-face(X;I) List
4. ∀f1,f2:I-face(X;I).
     ((f1 ∈ L)
     
⇒ (f2 ∈ L)
     
⇒ (¬(dimension(f1) = dimension(f2) ∈ Cname))
     
⇒ ((dimension(f2):=direction(f2))(cube(f1))
        = (dimension(f1):=direction(f1))(cube(f2))
        ∈ X(I-[dimension(f1); dimension(f2)])))
5. i : ℕ||L||
6. j : ℕi
7. ¬(dimension(L[j]) = dimension(L[i]) ∈ Cname)
8. (dimension(L[i]):=direction(L[i]))(cube(L[j]))
= (dimension(L[j]):=direction(L[j]))(cube(L[i]))
∈ X(I-[dimension(L[j]); dimension(L[i])])
⊢ face-compatible(X;I;L[j];L[i])
Latex:
Latex:
1.  [X]  :  CubicalSet
2.  I  :  Cname  List
3.  L  :  I-face(X;I)  List
4.  \mforall{}f1,f2:I-face(X;I).
          ((f1  \mmember{}  L)
          {}\mRightarrow{}  (f2  \mmember{}  L)
          {}\mRightarrow{}  (\mneg{}(dimension(f1)  =  dimension(f2)))
          {}\mRightarrow{}  ((dimension(f2):=direction(f2))(cube(f1))  =  (dimension(f1):=direction(f1))(cube(f2))))
5.  i  :  \mBbbN{}||L||
6.  j  :  \mBbbN{}i
7.  \mneg{}(dimension(L[j])  =  dimension(L[i]))
\mvdash{}  face-compatible(X;I;L[j];L[i])
By
Latex:
(FHyp  4  [-1]  THEN  Auto)
Home
Index