Nuprl Lemma : cubical-pi_wf
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}].  X ⊢ ΠA B
Proof
Definitions occuring in Statement : 
cubical-pi: ΠA B
, 
cube-context-adjoin: X.A
, 
cubical-type: {X ⊢ _}
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-pi: ΠA B
, 
cubical-type: {X ⊢ _}
, 
cubical-pi-family: cubical-pi-family(X;A;B;I;a)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
top: Top
, 
prop: ℙ
, 
cand: A c∧ B
Lemmas referenced : 
cubical-type_wf, 
cube-context-adjoin_wf, 
cubical-set_wf, 
cubical-pi-family_wf, 
I-cube_wf, 
list_wf, 
coordinate_name_wf, 
name-comp_wf, 
subtype_rel_dep_function, 
cubical-type-at_wf, 
cube-set-restriction_wf, 
cc-adjoin-cube_wf, 
subtype_rel-equal, 
equal_wf, 
cube-set-restriction-comp, 
iff_weakening_equal, 
name-morph_wf, 
all_wf, 
cubical-type-ap-morph_wf, 
cc-adjoin-cube-restriction, 
squash_wf, 
true_wf, 
name-comp-assoc, 
name-comp-id-left, 
id-morph_wf, 
cube-set-restriction-id
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
dependent_pairEquality, 
lambdaEquality, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
dependent_functionElimination, 
independent_isectElimination, 
instantiate, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
voidElimination, 
voidEquality, 
functionEquality, 
hyp_replacement, 
independent_pairFormation, 
productEquality
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].    X  \mvdash{}  \mPi{}A  B
Date html generated:
2017_10_05-AM-10_14_17
Last ObjectModification:
2017_07_28-AM-11_19_16
Theory : cubical!sets
Home
Index