Nuprl Lemma : cubical-term-equal

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[z:I:(Cname List) ⟶ a:X(I) ⟶ ((fst(A)) a)].
  z ∈ {X ⊢ _:A} supposing z ∈ (I:(Cname List) ⟶ a:X(I) ⟶ ((fst(A)) a))


Proof




Definitions occuring in Statement :  cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet coordinate_name: Cname list: List uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] cubical-type: {X ⊢ _} pi1: fst(t) cubical-term: {X ⊢ _:AF} uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  cubical-term_wf cubical-type_wf cubical-set_wf list_wf coordinate_name_wf I-cube_wf equal_wf all_wf name-morph_wf cube-set-restriction_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis lambdaFormation setElimination rename productElimination sqequalRule applyEquality functionExtensionality functionEquality dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality lambdaEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[z:I:(Cname  List)  {}\mrightarrow{}  a:X(I)  {}\mrightarrow{}  ((fst(A))  I  a)].
    u  =  z  supposing  u  =  z



Date html generated: 2017_10_05-AM-10_13_03
Last ObjectModification: 2017_07_28-AM-11_18_40

Theory : cubical!sets


Home Index