Nuprl Lemma : cubical-term-equal
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[z:I:(Cname List) ⟶ a:X(I) ⟶ ((fst(A)) I a)].
  u = z ∈ {X ⊢ _:A} supposing u = z ∈ (I:(Cname List) ⟶ a:X(I) ⟶ ((fst(A)) I a))
Proof
Definitions occuring in Statement : 
cubical-term: {X ⊢ _:AF}
, 
cubical-type: {X ⊢ _}
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
coordinate_name: Cname
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
cubical-type: {X ⊢ _}
, 
pi1: fst(t)
, 
cubical-term: {X ⊢ _:AF}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf, 
list_wf, 
coordinate_name_wf, 
I-cube_wf, 
equal_wf, 
all_wf, 
name-morph_wf, 
cube-set-restriction_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
setElimination, 
rename, 
productElimination, 
sqequalRule, 
applyEquality, 
functionExtensionality, 
functionEquality, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
lambdaEquality
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[z:I:(Cname  List)  {}\mrightarrow{}  a:X(I)  {}\mrightarrow{}  ((fst(A))  I  a)].
    u  =  z  supposing  u  =  z
Date html generated:
2017_10_05-AM-10_13_03
Last ObjectModification:
2017_07_28-AM-11_18_40
Theory : cubical!sets
Home
Index