Nuprl Lemma : poset-cat-ob_subtype

[I,J:Cname List].  cat-ob(poset-cat(I)) ⊆cat-ob(poset-cat(J)) supposing nameset(J) ⊆nameset(I)


Proof




Definitions occuring in Statement :  poset-cat: poset-cat(J) nameset: nameset(L) coordinate_name: Cname cat-ob: cat-ob(C) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  poset-cat: poset-cat(J) cat-ob: cat-ob(C) pi1: fst(t) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  name-morph_subtype nil_wf coordinate_name_wf nameset_wf subtype_rel_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache independent_isectElimination lambdaEquality axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I,J:Cname  List].    cat-ob(poset-cat(I))  \msubseteq{}r  cat-ob(poset-cat(J))  supposing  nameset(J)  \msubseteq{}r  nameset(I)



Date html generated: 2016_06_16-PM-06_52_13
Last ObjectModification: 2015_12_28-PM-04_23_07

Theory : cubical!sets


Home Index