Nuprl Lemma : poset-functor-id
∀[I:Cname List]. ∀[f:name-morph(I;I)].
  poset-functor(I;I;f) = 1 ∈ Functor(poset-cat(I);poset-cat(I)) supposing f = 1 ∈ name-morph(I;I)
Proof
Definitions occuring in Statement : 
poset-functor: poset-functor(J;K;f), 
poset-cat: poset-cat(J), 
id-morph: 1, 
name-morph: name-morph(I;J), 
coordinate_name: Cname, 
id_functor: 1, 
cat-functor: Functor(C1;C2), 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
cat-functor_wf, 
poset-cat_wf, 
poset-id-functor, 
id_functor_wf, 
iff_weakening_equal, 
equal-wf-T-base, 
poset-functor_wf, 
name-morph_wf, 
id-morph_wf, 
list_wf, 
coordinate_name_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
thin, 
applyEquality, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[I:Cname  List].  \mforall{}[f:name-morph(I;I)].    poset-functor(I;I;f)  =  1  supposing  f  =  1
Date html generated:
2017_10_05-AM-10_29_19
Last ObjectModification:
2017_07_28-AM-11_24_11
Theory : cubical!sets
Home
Index