Nuprl Definition : bool-negation-equiv

bool-negation-equiv(X) ==  bijection-equiv(X;𝔹;𝔹b.(¬bb);λb.(¬bb))



Definitions occuring in Statement :  bijection-equiv: bijection-equiv(X;A;B;f;g) bnot: ¬bb bool: 𝔹 lambda: λx.A[x]
Definitions occuring in definition :  bnot: ¬bb lambda: λx.A[x] bool: 𝔹 bijection-equiv: bijection-equiv(X;A;B;f;g)
FDL editor aliases :  bool-negation-equiv

Latex:
bool-negation-equiv(X)  ==    bijection-equiv(X;\mBbbB{};\mBbbB{};\mlambda{}b.(\mneg{}\msubb{}b);\mlambda{}b.(\mneg{}\msubb{}b))



Date html generated: 2017_02_21-AM-11_04_40
Last ObjectModification: 2017_02_10-PM-06_42_38

Theory : cubical!type!theory


Home Index