Nuprl Definition : bool-negation-equiv
bool-negation-equiv(X) ==  bijection-equiv(X;𝔹;𝔹;λb.(¬bb);λb.(¬bb))
Definitions occuring in Statement : 
bijection-equiv: bijection-equiv(X;A;B;f;g)
, 
bnot: ¬bb
, 
bool: 𝔹
, 
lambda: λx.A[x]
Definitions occuring in definition : 
bnot: ¬bb
, 
lambda: λx.A[x]
, 
bool: 𝔹
, 
bijection-equiv: bijection-equiv(X;A;B;f;g)
FDL editor aliases : 
bool-negation-equiv
Latex:
bool-negation-equiv(X)  ==    bijection-equiv(X;\mBbbB{};\mBbbB{};\mlambda{}b.(\mneg{}\msubb{}b);\mlambda{}b.(\mneg{}\msubb{}b))
Date html generated:
2017_02_21-AM-11_04_40
Last ObjectModification:
2017_02_10-PM-06_42_38
Theory : cubical!type!theory
Home
Index