Nuprl Lemma : case-term-1'

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma ⊢ _}]. ∀[u,x:{Gamma ⊢ _:A}]. ∀[v:Top].
  (Gamma ⊢ (u ∨ v)=x:A) supposing ((x u ∈ {Gamma ⊢ _:A}) and (phi 1(𝔽) ∈ {Gamma ⊢ _:𝔽}))


Proof




Definitions occuring in Statement :  case-term: (u ∨ v) same-cubical-term: X ⊢ u=v:A face-1: 1(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a same-cubical-term: X ⊢ u=v:A subtype_rel: A ⊆B
Lemmas referenced :  case-term-1 face-1_wf istype-top cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf face-type_wf cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination equalityTransitivity equalitySymmetry equalityIstype inhabitedIsType universeIsType instantiate applyEquality sqequalRule

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[u,x:\{Gamma  \mvdash{}  \_:A\}].  \mforall{}[v:Top].
    (Gamma  \mvdash{}  (u  \mvee{}  v)=x:A)  supposing  ((x  =  u)  and  (phi  =  1(\mBbbF{})))



Date html generated: 2020_05_20-PM-03_11_41
Last ObjectModification: 2020_04_07-PM-00_58_51

Theory : cubical!type!theory


Home Index