Nuprl Lemma : closed-term-to-term_wf

[T:{ * ⊢ _}]. ∀[t:closed-cubical-term(T)]. ∀[X:j⊢].  (closed-term-to-term(t) ∈ {X ⊢ _:closed-type-to-type(T)})


Proof




Definitions occuring in Statement :  closed-term-to-term: closed-term-to-term(t) closed-cubical-term: closed-cubical-term(T) cubical-term: {X ⊢ _:A} closed-type-to-type: closed-type-to-type(T) closed-cubical-type: * ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T closed-term-to-term: closed-term-to-term(t) closed-cubical-type: * ⊢ _} closed-cubical-term: closed-cubical-term(T) pi1: fst(t) pi2: snd(t) closed-type-to-type: closed-type-to-type(T) cubical-term: {X ⊢ _:A} all: x:A. B[x] and: P ∧ Q subtype_rel: A ⊆B cubical-type-at: A(a) guard: {T}
Lemmas referenced :  cubical_type_at_pair_lemma I_cube_wf fset_wf nat_wf cubical_type_ap_morph_pair_lemma names-hom_wf subtype_rel_self cube-set-restriction_wf cubical_set_wf closed-cubical-term_wf closed-cubical-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution setElimination thin rename productElimination dependent_set_memberEquality_alt extract_by_obid dependent_functionElimination Error :memTop,  hypothesis lambdaEquality_alt applyEquality hypothesisEquality universeIsType instantiate isectElimination lambdaFormation_alt inhabitedIsType functionIsType because_Cache equalityIstype axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[T:\{  *  \mvdash{}  \_\}].  \mforall{}[t:closed-cubical-term(T)].  \mforall{}[X:j\mvdash{}].
    (closed-term-to-term(t)  \mmember{}  \{X  \mvdash{}  \_:closed-type-to-type(T)\})



Date html generated: 2020_05_20-PM-01_53_07
Last ObjectModification: 2020_03_20-PM-00_35_28

Theory : cubical!type!theory


Home Index