Nuprl Lemma : fset_wf
∀[T:Type]. (fset(T) ∈ Type)
Proof
Definitions occuring in Statement :
fset: fset(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
fset: fset(T)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
Lemmas referenced :
set-equal-equiv,
quotient_wf,
list_wf,
set-equal_wf
Rules used in proof :
cut,
lemma_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
lambdaEquality,
independent_isectElimination,
universeEquality
Latex:
\mforall{}[T:Type]. (fset(T) \mmember{} Type)
Date html generated:
2016_05_14-PM-03_37_54
Last ObjectModification:
2015_12_26-PM-06_42_20
Theory : finite!sets
Home
Index