Nuprl Lemma : comp-universe-term
∀[G:j⊢]. (compOp(t𝕌) = univ-comp{i:l}() ∈ G ⊢ CompOp(c𝕌))
Proof
Definitions occuring in Statement : 
universe-term: t𝕌, 
univ-comp: univ-comp{i:l}(), 
universe-comp-op: compOp(t), 
cubical-universe: c𝕌, 
composition-op: Gamma ⊢ CompOp(A), 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
universe-term: t𝕌, 
member: t ∈ T, 
universe-encode: encode(T;cT)
Lemmas referenced : 
universe-comp-op-encode, 
cubical-universe_wf, 
univ-comp_wf, 
cubical_set_wf, 
csm-cubical-universe, 
csm-univ-comp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
universeIsType, 
Error :memTop
Latex:
\mforall{}[G:j\mvdash{}].  (compOp(t\mBbbU{})  =  univ-comp\{i:l\}())
Date html generated:
2020_05_20-PM-07_25_20
Last ObjectModification:
2020_04_28-PM-01_09_10
Theory : cubical!type!theory
Home
Index