Nuprl Lemma : comp-universe-term

[G:j⊢]. (compOp(t𝕌univ-comp{i:l}() ∈ G ⊢ CompOp(c𝕌))


Proof




Definitions occuring in Statement :  universe-term: t𝕌 univ-comp: univ-comp{i:l}() universe-comp-op: compOp(t) cubical-universe: c𝕌 composition-op: Gamma ⊢ CompOp(A) cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] universe-term: t𝕌 member: t ∈ T universe-encode: encode(T;cT)
Lemmas referenced :  universe-comp-op-encode cubical-universe_wf univ-comp_wf cubical_set_wf csm-cubical-universe csm-univ-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis sqequalRule universeIsType Error :memTop

Latex:
\mforall{}[G:j\mvdash{}].  (compOp(t\mBbbU{})  =  univ-comp\{i:l\}())



Date html generated: 2020_05_20-PM-07_25_20
Last ObjectModification: 2020_04_28-PM-01_09_10

Theory : cubical!type!theory


Home Index