Nuprl Lemma : composition-op-implies-composition-structure

Gamma:j⊢. ∀A:{Gamma ⊢ _}. ∀cA:Gamma ⊢ CompOp(A).  Gamma ⊢ Compositon(A)


Proof




Definitions occuring in Statement :  composition-structure: Gamma ⊢ Compositon(A) composition-op: Gamma ⊢ CompOp(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  comp-op-to-comp-fun_wf2 composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeIsType instantiate applyEquality sqequalRule

Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}A:\{Gamma  \mvdash{}  \_\}.  \mforall{}cA:Gamma  \mvdash{}  CompOp(A).    Gamma  \mvdash{}  Compositon(A)



Date html generated: 2020_05_20-PM-04_27_15
Last ObjectModification: 2020_04_18-AM-09_55_48

Theory : cubical!type!theory


Home Index