Nuprl Lemma : composition-op-implies-composition-structure
∀Gamma:j⊢. ∀A:{Gamma ⊢ _}. ∀cA:Gamma ⊢ CompOp(A).  Gamma ⊢ Compositon(A)
Proof
Definitions occuring in Statement : 
composition-structure: Gamma ⊢ Compositon(A)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
comp-op-to-comp-fun_wf2, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeIsType, 
instantiate, 
applyEquality, 
sqequalRule
Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}A:\{Gamma  \mvdash{}  \_\}.  \mforall{}cA:Gamma  \mvdash{}  CompOp(A).    Gamma  \mvdash{}  Compositon(A)
Date html generated:
2020_05_20-PM-04_27_15
Last ObjectModification:
2020_04_18-AM-09_55_48
Theory : cubical!type!theory
Home
Index