Nuprl Lemma : comp-op-to-comp-fun_wf2
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)].  (cop-to-cfun(cA) ∈ Gamma ⊢ Compositon(A))
Proof
Definitions occuring in Statement : 
comp-op-to-comp-fun: cop-to-cfun(cA)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
prop: ℙ
Lemmas referenced : 
uniform-comp-function_wf, 
comp-op-to-comp-fun_wf, 
csm-comp-op-to-comp-fun, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cube_set_map_cumulativity-i-j, 
cube-context-adjoin_wf, 
interval-type_wf, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
csm-id-adjoin_wf-interval-0, 
csm-ap-term_wf, 
context-subset_wf, 
thin-context-subset-adjoin, 
istype-cubical-term, 
csm-context-subset-subtype3, 
face-type_wf, 
cube_set_map_wf, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
lambdaFormation_alt, 
instantiate, 
because_Cache, 
applyEquality, 
sqequalRule, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].    (cop-to-cfun(cA)  \mmember{}  Gamma  \mvdash{}  Compositon(A))
Date html generated:
2020_05_20-PM-04_27_02
Last ObjectModification:
2020_04_17-PM-08_46_58
Theory : cubical!type!theory
Home
Index