Nuprl Lemma : comp-op-to-comp-fun_wf2

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)].  (cop-to-cfun(cA) ∈ Gamma ⊢ Compositon(A))


Proof




Definitions occuring in Statement :  comp-op-to-comp-fun: cop-to-cfun(cA) composition-structure: Gamma ⊢ Compositon(A) composition-op: Gamma ⊢ CompOp(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-structure: Gamma ⊢ Compositon(A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] subtype_rel: A ⊆B csm-id-adjoin: [u] csm-id: 1(X) prop:
Lemmas referenced :  uniform-comp-function_wf comp-op-to-comp-fun_wf csm-comp-op-to-comp-fun cubical-type-cumulativity2 cubical_set_cumulativity-i-j cube_set_map_cumulativity-i-j cube-context-adjoin_wf interval-type_wf constrained-cubical-term_wf csm-ap-type_wf csm-id-adjoin_wf-interval-0 csm-ap-term_wf context-subset_wf thin-context-subset-adjoin istype-cubical-term csm-context-subset-subtype3 face-type_wf cube_set_map_wf composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt lambdaFormation_alt instantiate because_Cache applyEquality sqequalRule universeIsType inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].    (cop-to-cfun(cA)  \mmember{}  Gamma  \mvdash{}  Compositon(A))



Date html generated: 2020_05_20-PM-04_27_02
Last ObjectModification: 2020_04_17-PM-08_46_58

Theory : cubical!type!theory


Home Index