Nuprl Lemma : csm-comp-op-to-comp-fun
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[H,K:j⊢]. ∀[tau:K j⟶ H]. ∀[sigma:H.𝕀 j⟶ Gamma].
∀[phi:{H ⊢ _:𝔽}]. ∀[u:{H, phi.𝕀 ⊢ _:(A)sigma}]. ∀[a0:{H ⊢ _:((A)sigma)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}].
  ((cop-to-cfun(cA) H sigma phi u a0)tau
  = (cop-to-cfun(cA) K sigma o tau+ (phi)tau (u)tau+ (a0)tau)
  ∈ {K ⊢ _:(((A)sigma)[1(𝕀)])tau[(phi)tau |⟶ ((u)[1(𝕀)])tau]})
Proof
Definitions occuring in Statement : 
comp-op-to-comp-fun: cop-to-cfun(cA), 
composition-op: Gamma ⊢ CompOp(A), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
context-subset: Gamma, phi, 
face-type: 𝔽, 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
csm+: tau+, 
csm-id-adjoin: [u], 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
csm-comp: G o F, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
csm-id-adjoin: [u], 
csm-id: 1(X), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
cand: A c∧ B, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
comp-op-to-comp-fun: cop-to-cfun(cA), 
csm+: tau+, 
csm-comp: G o F, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
guard: {T}, 
csm-ap: (s)x, 
csm-adjoin: (s;u), 
interval-0: 0(𝕀), 
prop: ℙ, 
squash: ↓T, 
true: True, 
compose: f o g, 
constant-cubical-type: (X), 
cc-fst: p, 
cc-snd: q, 
csm-ap-type: (AF)s, 
interval-type: 𝕀, 
cubical-type: {X ⊢ _}, 
pi2: snd(t), 
pi1: fst(t), 
csm-ap-term: (t)s, 
interval-1: 1(𝕀), 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
subset-iota: iota
Lemmas referenced : 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf, 
interval-0_wf, 
csm-ap-term_wf, 
context-subset_wf, 
thin-context-subset-adjoin, 
csm-id-adjoin_wf-interval-0, 
constrained-cubical-term-eqcd, 
istype-cubical-term, 
face-type_wf, 
cube_set_map_wf, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf, 
interval-1_wf, 
csm-id-adjoin_wf-interval-1, 
csm-composition-comp, 
csm+_wf_interval, 
csm-composition_wf, 
composition-term-uniformity, 
constrained-cubical-term_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-term_wf, 
composition-term_wf, 
csm-face-type, 
csm-comp_wf, 
context-subset-map, 
csm-context-subset-subtype3, 
csm-constrained-cubical-term, 
cubical-term-eqcd, 
csm-context-subset-subtype2, 
subset-cubical-term2, 
sub_cubical_set_self, 
thin-context-subset, 
subset-cubical-type, 
context-subset-is-subset, 
equal_functionality_wrt_subtype_rel2, 
cubical-type-cumulativity, 
subtype_rel_self, 
comp-op-to-comp-fun_wf, 
context-subset-term-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
hypothesis, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
because_Cache, 
inhabitedIsType, 
applyEquality, 
sqequalRule, 
lambdaEquality_alt, 
cumulativity, 
universeEquality, 
independent_pairFormation, 
promote_hyp, 
productElimination, 
dependent_set_memberEquality_alt, 
independent_functionElimination, 
dependent_functionElimination, 
equalityIstype, 
lambdaFormation_alt, 
rename, 
hyp_replacement, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
Error :memTop, 
setElimination, 
functionEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].  \mforall{}[H,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].
\mforall{}[sigma:H.\mBbbI{}  j{}\mrightarrow{}  Gamma].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[u:\{H,  phi.\mBbbI{}  \mvdash{}  \_:(A)sigma\}].
\mforall{}[a0:\{H  \mvdash{}  \_:((A)sigma)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].
    ((cop-to-cfun(cA)  H  sigma  phi  u  a0)tau
    =  (cop-to-cfun(cA)  K  sigma  o  tau+  (phi)tau  (u)tau+  (a0)tau))
Date html generated:
2020_05_20-PM-04_26_48
Last ObjectModification:
2020_05_02-AM-09_29_47
Theory : cubical!type!theory
Home
Index