Nuprl Lemma : composition-term-uniformity
∀[H,K:j⊢]. ∀[tau:K j⟶ H]. ∀[phi:{H ⊢ _:𝔽}]. ∀[A:{H.𝕀 ⊢ _}]. ∀[u:{H, phi.𝕀 ⊢ _:A}].
∀[a0:{H ⊢ _:(A)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}]. ∀[cA:H.𝕀 ⊢ CompOp(A)].
  ((comp cA [phi ⊢→ u] a0)tau = comp (cA)tau+ [(phi)tau ⊢→ (u)tau+] (a0)tau ∈ {K ⊢ _:((A)[1(𝕀)])tau})
Proof
Definitions occuring in Statement : 
composition-term: comp cA [phi ⊢→ u] a0, 
csm-composition: (comp)sigma, 
composition-op: Gamma ⊢ CompOp(A), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
context-subset: Gamma, phi, 
face-type: 𝔽, 
interval-1: 1(𝕀), 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
csm+: tau+, 
csm-id-adjoin: [u], 
cube-context-adjoin: X.A, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
csm+: tau+, 
csm-comp: G o F, 
subtype_rel: A ⊆r B, 
csm-id-adjoin: [u], 
csm-id: 1(X), 
uimplies: b supposing a, 
cubical-type: {X ⊢ _}, 
interval-0: 0(𝕀), 
csm-ap-term: (t)s, 
csm-ap-type: (AF)s, 
csm-adjoin: (s;u), 
csm-ap: (s)x, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
guard: {T}, 
interval-type: 𝕀, 
cc-snd: q, 
cc-fst: p, 
constant-cubical-type: (X), 
pi2: snd(t), 
compose: f o g, 
pi1: fst(t), 
same-cubical-type: Gamma ⊢ A = B, 
dM0: 0, 
lattice-0: 0, 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
btrue: tt, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
interval-1: 1(𝕀), 
cubical-term-at: u(a), 
composition-term: comp cA [phi ⊢→ u] a0, 
csm-composition: (comp)sigma, 
composition-op: Gamma ⊢ CompOp(A), 
cc-adjoin-cube: (v;u), 
squash: ↓T, 
prop: ℙ, 
true: True, 
interval-presheaf: 𝕀, 
names: names(I), 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cubical-type-at: A(a), 
face-type: 𝔽, 
I_cube: A(I), 
functor-ob: ob(F), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
subset-iota: iota, 
formal-cube: formal-cube(I), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
and: P ∧ Q, 
cube-context-adjoin: X.A, 
context-map: <rho>, 
names-hom: I ⟶ J, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u), 
cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0), 
DeMorgan-algebra: DeMorganAlgebra, 
nc-0: (i0), 
bool: 𝔹, 
unit: Unit, 
uiff: uiff(P;Q), 
bnot: ¬bb, 
not: ¬A, 
false: False, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
cubical-type-ap-morph: (u a f), 
cube-set-restriction: f(s), 
dM-lift: dM-lift(I;J;f), 
free-dma-lift: free-dma-lift(T;eq;dm;eq2;f), 
free-DeMorgan-algebra-property, 
free-dist-lattice-property, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum, 
context-subset: Gamma, phi, 
name-morph-satisfies: (psi f) = 1, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
sub_cubical_set: Y ⊆ X, 
functor-arrow: arrow(F), 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
Lemmas referenced : 
csm-ap-term_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf_interval, 
csm+_wf_interval, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
csm-ap-type_wf, 
csm-id-adjoin_wf, 
interval-0_wf, 
context-subset_wf, 
thin-context-subset-adjoin, 
csm-id-adjoin_wf-interval-0, 
constrained-cubical-term-eqcd, 
istype-cubical-term, 
cubical-type_wf, 
cube_set_map_wf, 
cubical_set_wf, 
cubical-term-equal2, 
interval-1_wf, 
composition-term_wf, 
csm-composition_wf, 
context-subset-map, 
csm-constrained-cubical-term, 
subset-cubical-term2, 
sub_cubical_set_self, 
thin-context-subset, 
subset-cubical-type, 
context-subset-is-subset, 
equal_functionality_wrt_subtype_rel2, 
csm-ap-term-wf-subset, 
face-term-implies-same, 
cubical-term-eqcd, 
csm-ap-term-at, 
I_cube_wf, 
fset_wf, 
nat_wf, 
new-name_wf, 
cc-adjoin-cube_wf, 
squash_wf, 
true_wf, 
istype-cubical-type-at, 
add-name_wf, 
csm-ap-restriction, 
nc-s_wf, 
f-subset-add-name, 
interval-type-at, 
I_cube_pair_redex_lemma, 
dM_inc_wf, 
trivial-member-add-name1, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
cubical-term-at_wf, 
subtype_rel_self, 
face-presheaf_wf2, 
csm-comp_wf, 
formal-cube_wf1, 
context-map_wf, 
cube-set-restriction_wf, 
cubical-term_wf, 
cubical-subset-is-context-subset, 
csm-ap_wf, 
cubical-term-equal, 
face-type-at, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
arrow_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
cubical-type-at_wf_face-type, 
names-hom_wf, 
istype-universe, 
subtype_rel-equal, 
iff_weakening_equal, 
face-type-comp-at-lemma, 
csm-comp-context-map, 
context-subset-subtype-simple, 
context-subset-map-equal, 
cubical-type-at_wf, 
composition-type-lemma1, 
interval-type-at-is-point, 
csm-ap-type-at, 
cubical-subset_wf, 
cc-adjoin-cube-restriction, 
cube-set-restriction-comp, 
nc-0_wf, 
cubical-subset-I_cube-member, 
nh-comp_wf, 
s-comp-if-lemma1, 
nh-comp-assoc, 
s-comp-nc-0-new, 
nh-id-right, 
cubical-subset-I_cube, 
dM_wf, 
DeMorgan-algebra-structure_wf, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
DeMorgan-algebra-axioms_wf, 
dM-lift_wf2, 
interval-type-ap-morph, 
dM-lift-inc, 
dM-lift-0, 
dM0-sq-empty, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
assert_elim, 
bnot_wf, 
bool_wf, 
eq_int_eq_true, 
bfalse_wf, 
btrue_neq_bfalse, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
btrue_wf, 
not_assert_elim, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
dM0_wf, 
cubical-type-ap-morph_wf, 
cube-set-restriction-when-id, 
cubical-term-at-morph, 
csm-cubical-type-ap-morph, 
lattice-1_wf, 
fl-morph_wf, 
face-type-ap-morph, 
subset-I_cube, 
nh-comp-sq, 
context-adjoin-subset1, 
cube_set_restriction_pair_lemma, 
fl-morph-comp2, 
cubical-path-condition_wf, 
csm-ap-interval-1-adjoin-lemma, 
free-DeMorgan-algebra-property, 
free-dist-lattice-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
Error :memTop, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
lambdaEquality_alt, 
hyp_replacement, 
setElimination, 
rename, 
productElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality_alt, 
intEquality, 
functionExtensionality, 
productEquality, 
cumulativity, 
isectEquality, 
universeEquality, 
dependent_pairEquality_alt, 
unionElimination, 
equalityElimination, 
independent_pairFormation, 
productIsType, 
applyLambdaEquality, 
voidElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
approximateComputation, 
int_eqEquality
Latex:
\mforall{}[H,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{H.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[u:\{H,  phi.\mBbbI{}  \mvdash{}  \_:A\}].
\mforall{}[a0:\{H  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].  \mforall{}[cA:H.\mBbbI{}  \mvdash{}  CompOp(A)].
    ((comp  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0)tau  =  comp  (cA)tau+  [(phi)tau  \mvdash{}\mrightarrow{}  (u)tau+]  (a0)tau)
Date html generated:
2020_05_20-PM-04_25_42
Last ObjectModification:
2020_05_02-AM-10_10_30
Theory : cubical!type!theory
Home
Index