Nuprl Lemma : face-type-comp-at-lemma
∀[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[I,J:fset(ℕ)]. ∀[i:ℕ]. ∀[f:J ⟶ I+i]. ∀[v:H(I)].  (phi(f(s(v))) = f(s(phi(v))) ∈ 𝔽(f))
Proof
Definitions occuring in Statement : 
face-type: 𝔽, 
cubical-term-at: u(a), 
cubical-term: {X ⊢ _:A}, 
cubical-type-at: A(a), 
face-presheaf: 𝔽, 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nc-s: s, 
add-name: I+i, 
names-hom: I ⟶ J, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
squash: ↓T, 
prop: ℙ, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
cubical-type-at: A(a), 
pi1: fst(t), 
face-type: 𝔽, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
I_cube_wf, 
names-hom_wf, 
add-name_wf, 
istype-nat, 
fset_wf, 
nat_wf, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-type-at_wf_face-type, 
cubical-term-at-morph, 
cube-set-restriction_wf, 
nc-s_wf, 
f-subset-add-name, 
subtype_rel-equal, 
face-presheaf_wf2, 
cubical-term-at_wf, 
subtype_rel_self, 
iff_weakening_equal, 
face-type-ap-morph, 
cube_set_restriction_pair_lemma, 
fl-morph_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
instantiate, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
Error :memTop, 
independent_isectElimination, 
dependent_functionElimination, 
sqequalRule, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
setElimination, 
rename, 
inhabitedIsType, 
productEquality, 
cumulativity, 
isectEquality
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[f:J  {}\mrightarrow{}  I+i].  \mforall{}[v:H(I)].
    (phi(f(s(v)))  =  f(s(phi(v))))
Date html generated:
2020_05_20-PM-04_24_15
Last ObjectModification:
2020_04_10-AM-06_17_21
Theory : cubical!type!theory
Home
Index