Nuprl Lemma : assert-bnot

[p:𝔹]. ((↑¬bp)  (¬↑p))


Proof




Definitions occuring in Statement :  bnot: ¬bb assert: b bool: 𝔹 uall: [x:A]. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A false: False bool: 𝔹 unit: Unit it: btrue: tt bnot: ¬bb ifthenelse: if then else fi  assert: b bfalse: ff prop:
Lemmas referenced :  false_wf assert_wf bnot_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution unionElimination equalityElimination sqequalRule voidElimination lemma_by_obid hypothesis independent_functionElimination isectElimination hypothesisEquality lambdaEquality dependent_functionElimination

Latex:
\mforall{}[p:\mBbbB{}].  ((\muparrow{}\mneg{}\msubb{}p)  {}\mRightarrow{}  (\mneg{}\muparrow{}p))



Date html generated: 2016_05_13-PM-03_57_01
Last ObjectModification: 2015_12_26-AM-10_51_58

Theory : bool_1


Home Index