Nuprl Lemma : context-subset-map-equal

[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[X:j⊢]. ∀[f,g:X j⟶ H.𝕀].  ((f g ∈ j⟶ H.𝕀 (f g ∈ X, ((phi)p)f j⟶ H, phi.𝕀))


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q and: P ∧ Q subtype_rel: A ⊆B squash: T prop: true: True
Lemmas referenced :  cube-context-adjoin_wf interval-type_wf context-subset-map csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf cube_set_map_wf cubical-term_wf cubical_set_wf squash_wf true_wf context-subset_wf csm-subtype-iso-instance1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination hypothesisEquality lambdaFormation_alt dependent_set_memberEquality_alt independent_pairFormation equalityTransitivity equalitySymmetry sqequalRule productIsType equalityIstype inhabitedIsType applyEquality lambdaEquality_alt setElimination rename because_Cache Error :memTop,  universeIsType imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement productElimination applyLambdaEquality

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[X:j\mvdash{}].  \mforall{}[f,g:X  j{}\mrightarrow{}  H.\mBbbI{}].    ((f  =  g)  {}\mRightarrow{}  (f  =  g))



Date html generated: 2020_05_20-PM-03_06_16
Last ObjectModification: 2020_04_06-PM-00_49_14

Theory : cubical!type!theory


Home Index