Nuprl Lemma : context-subset-map-equal
∀[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[X:j⊢]. ∀[f,g:X j⟶ H.𝕀].  ((f = g ∈ X j⟶ H.𝕀) 
⇒ (f = g ∈ X, ((phi)p)f j⟶ H, phi.𝕀))
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
Lemmas referenced : 
cube-context-adjoin_wf, 
interval-type_wf, 
context-subset-map, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf, 
cube_set_map_wf, 
cubical-term_wf, 
cubical_set_wf, 
squash_wf, 
true_wf, 
context-subset_wf, 
csm-subtype-iso-instance1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
lambdaFormation_alt, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
because_Cache, 
Error :memTop, 
universeIsType, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
productElimination, 
applyLambdaEquality
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[X:j\mvdash{}].  \mforall{}[f,g:X  j{}\mrightarrow{}  H.\mBbbI{}].    ((f  =  g)  {}\mRightarrow{}  (f  =  g))
Date html generated:
2020_05_20-PM-03_06_16
Last ObjectModification:
2020_04_06-PM-00_49_14
Theory : cubical!type!theory
Home
Index