Nuprl Lemma : context-subset-map

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[Z:j⊢]. ∀[s:Z j⟶ Gamma].  (s ∈ Z, (phi)s j⟶ Gamma, phi)


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cube_set_map: A ⟶ B psc_map: A ⟶ B type-cat: TypeCat cube-cat: CubeCat op-cat: op-cat(C) nat-trans: nat-trans(C;D;F;G) spreadn: spread4 all: x:A. B[x] functor-arrow: arrow(F) functor-ob: ob(F) context-subset: Gamma, phi compose: g pi1: fst(t) pi2: snd(t) I_cube: A(I) subtype_rel: A ⊆B csm-ap: (s)x cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a cube-set-restriction: f(s) squash: T fset: fset(T) quotient: x,y:A//B[x; y] cat-ob: cat-ob(C) cat-arrow: cat-arrow(C) cubical_set: CubicalSet ps_context: __⊢ true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  csm-ap-term_wf face-type_wf csm-face-type cat_arrow_triple_lemma cat_comp_tuple_lemma cat_ob_pair_lemma cube_set_map_wf cubical-term_wf cubical_set_wf subtype_rel_self I_cube_wf csm-ap-term-at cubical-term-at_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf lattice-1_wf fset_wf nat_wf names-hom_wf csm-ap-restriction squash_wf true_wf istype-universe face-term-at-restriction-eq-1 cat-ob_wf op-cat_wf cube-cat_wf cat-arrow_wf type-cat_wf functor-ob_wf small-category-cumulativity-2 iff_weakening_equal cube-set-restriction_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry dependent_functionElimination setElimination rename dependent_set_memberEquality_alt universeIsType instantiate inhabitedIsType functionExtensionality applyEquality equalityIstype lambdaEquality_alt productEquality cumulativity isectEquality because_Cache independent_isectElimination setEquality lambdaFormation_alt imageElimination universeEquality functionEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination functionIsType setIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[Z:j\mvdash{}].  \mforall{}[s:Z  j{}\mrightarrow{}  Gamma].    (s  \mmember{}  Z,  (phi)s  j{}\mrightarrow{}  Gamma,  phi)



Date html generated: 2020_05_20-PM-02_45_08
Last ObjectModification: 2020_04_04-PM-04_59_19

Theory : cubical!type!theory


Home Index