Nuprl Lemma : csm-comp-context-map
∀[Gamma,Delta:j⊢]. ∀[sigma:Delta j⟶ Gamma]. ∀[I:fset(ℕ)]. ∀[rho:Delta(I)].
  (sigma o <rho> = <(sigma)rho> ∈ formal-cube(I) j⟶ Gamma)
Proof
Definitions occuring in Statement : 
csm-comp: G o F, 
csm-ap: (s)x, 
context-map: <rho>, 
cube_set_map: A ⟶ B, 
formal-cube: formal-cube(I), 
I_cube: A(I), 
cubical_set: CubicalSet, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
subtype_rel: A ⊆r B, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
cat-ob: cat-ob(C), 
pi1: fst(t), 
cube-cat: CubeCat, 
I_cube: A(I), 
functor-ob: ob(F), 
I_set: A(I), 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
op-cat: op-cat(C), 
spreadn: spread4, 
cat-arrow: cat-arrow(C), 
pi2: snd(t), 
type-cat: TypeCat, 
formal-cube: formal-cube(I), 
names-hom: I ⟶ J, 
Yoneda: Yoneda(I), 
all: ∀x:A. B[x], 
cat-comp: cat-comp(C), 
compose: f o g, 
functor-arrow: arrow(F), 
nh-comp: g ⋅ f, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g), 
csm-comp: G o F, 
pscm-comp: G o F, 
context-map: <rho>, 
ps-context-map: <rho>, 
csm-ap: (s)x, 
pscm-ap: (s)x
Lemmas referenced : 
pscm-comp-context-map, 
cube-cat_wf, 
subtype_rel_self, 
cat-ob_wf, 
I_set_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cube_set_map_wf, 
cubical_set_wf
Rules used in proof : 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
isect_memberFormation_alt, 
hypothesisEquality, 
applyEquality, 
universeIsType, 
because_Cache
Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[sigma:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Delta(I)].
    (sigma  o  <rho>  =  <(sigma)rho>)
Date html generated:
2020_05_20-PM-01_54_09
Last ObjectModification:
2020_04_20-AM-10_45_15
Theory : cubical!type!theory
Home
Index