Nuprl Lemma : interval-0_wf
∀[Gamma:j⊢]. (0(𝕀) ∈ {Gamma ⊢ _:𝕀})
Proof
Definitions occuring in Statement : 
interval-0: 0(𝕀), 
interval-type: 𝕀, 
cubical-term: {X ⊢ _:A}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical-term: {X ⊢ _:A}, 
interval-0: 0(𝕀), 
subtype_rel: A ⊆r B, 
lattice-point: Point(l), 
record-select: r.x, 
dM: dM(I), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
free-dist-lattice: free-dist-lattice(T; eq), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
btrue: tt, 
cubical-type-at: A(a), 
pi1: fst(t), 
interval-type: 𝕀, 
constant-cubical-type: (X), 
I_cube: A(I), 
functor-ob: ob(F), 
interval-presheaf: 𝕀, 
all: ∀x:A. B[x], 
dM0: 0, 
lattice-0: 0, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
cubical-type-ap-morph: (u a f), 
pi2: snd(t), 
cube-set-restriction: f(s), 
dM-lift: dM-lift(I;J;f), 
free-dma-lift: free-dma-lift(T;eq;dm;eq2;f), 
free-DeMorgan-algebra-property, 
free-dist-lattice-property, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac), 
lattice-fset-join: \/(s), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
fset-image: f"(s), 
f-union: f-union(domeq;rngeq;s;x.g[x]), 
list_accum: list_accum
Lemmas referenced : 
dM0_wf, 
subtype_rel_self, 
cubical-type-at_wf, 
interval-type_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-type-ap-morph_wf, 
names-hom_wf, 
istype-cubical-type-at, 
cube-set-restriction_wf, 
cubical_set_wf, 
free-DeMorgan-algebra-property, 
free-dist-lattice-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
universeIsType, 
lambdaFormation_alt, 
because_Cache, 
instantiate, 
inhabitedIsType, 
functionIsType, 
equalityIstype, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[Gamma:j\mvdash{}].  (0(\mBbbI{})  \mmember{}  \{Gamma  \mvdash{}  \_:\mBbbI{}\})
Date html generated:
2020_05_20-PM-02_35_53
Last ObjectModification:
2020_04_04-AM-10_09_58
Theory : cubical!type!theory
Home
Index