Nuprl Lemma : assert_elim
∀[b:𝔹]. b = tt supposing ↑b
Proof
Definitions occuring in Statement : 
assert: ↑b, 
btrue: tt, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
implies: P ⇒ Q, 
prop: ℙ, 
bfalse: ff, 
false: False
Lemmas referenced : 
btrue_wf, 
true_wf, 
false_wf, 
assert_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
sqequalRule, 
lambdaFormation, 
extract_by_obid, 
hypothesis, 
voidElimination, 
independent_functionElimination, 
Error :universeIsType, 
isectElimination, 
hypothesisEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[b:\mBbbB{}].  b  =  tt  supposing  \muparrow{}b
Date html generated:
2019_06_20-AM-11_20_05
Last ObjectModification:
2018_09_26-AM-10_50_28
Theory : union
Home
Index